Part III

Item-Level Analysis
6 Exploratory and Confirmatory Factor Analysis

Rex Kline

6.1 Introduction to Exploratory and Confirmatory Factor Analysis

Factor analysis is a widely used set of techniques in the behavioral sciences. It is also a primary technique for many researchers, especially those who conduct assessment-related studies. The basic logic and mathematics of factor analysis were first described by Charles Spearman (1904b), and many variations of factor analysis were developed over the following century. Factor analysis is unique among multivariate statistical procedures in that it was developed mainly by psychologists in order to test hypotheses about the correspondence between scores on observed (manifest) variables, or indicators, and hypothetical constructs (latent variables), or factors, presumed to affect those scores. Spearman and his contemporaries (e.g., Thomson, 1920) used factor analysis to evaluate models about the nature and organization of intelligence. Factor analysis is still widely used today in mental test studies as it is in many other research areas as a means to discover and identify latent variables, given initially only sample covariances among a set of indicators (Mulaik, 1987).

Over the years there have been thousands of published factor analytic studies (e.g., Costello & Osborne, 2005), so the impact of factor analysis in terms of sheer volume of the research literature is undeniable. Whether the typical factor analytic study also makes a substantive contribution, however, has been a matter of longstanding debate (e.g., Furfey & Daly, 1937). One challenge is that factor analysis has many decision points. This aspect of the technique is difficult for novices, who must navigate the analysis through a myriad of options about variable selection and sampling, the form of the input data, the method of factor extraction, and interpretive strategies, to name a few. A series of bad choices can compromise the results. It is also does not help that default options in some computer procedures for factor analysis are not actually the best choices in many studies. Based on critical reviews of the use of factor analysis in several different research areas (e.g., Fabrigar, Wegener, MacCallum, & Strahan, 1999; Watson & D. Thompson, 2006), it seems that many, if not most, factor analytic studies have at least one serious flaw. Common problems include sample sizes that are too small and failure to report sufficient numerical results so that the work can be critically evaluated.

6.2 Theoretical Foundations of Factor Analysis

Spearman (1904a) is also credited with articulating basic principles of classical measurement theory and, not surprisingly, there is close connection between factor analysis and psychometrics. In the latter, an observed score X_{ij} for person i measured at time j is understood as made up of a true component T_i and an error component E_{ij}, or

$$X_{ij} = T_i + E_{ij}$$ \hspace{1cm} (6.1)
Because measurement error is random and thus unrelated to true scores, variance in observed scores can be broken down into two nonoverlapping parts, or

\[\sigma_X^2 = \sigma_T^2 + \sigma_E^2 \] (6.2)

Score reliability coefficients calculated in samples estimate the ratio of true score variance over total observed variance, or

\[r_{XX} = \frac{\sigma_T^2}{\sigma_X^2} \] (6.3)

and the quantity \(1 - r_{XX} \) estimates the proportion of total variance due to measurement error. For example, if \(r_{XX} = .80 \), then \(1 - .80 = .20 \), or 20% of the total variance is due to error.

Factor analysis further partitions true variance into common variance and specific variance. Common variance is shared among a set of indicators and is a basis for intercorrelations among them that depart appreciably from zero. In factor analysis, it is generally assumed that (a) common variance is due to the effects of underlying factors and (b) the number of factors of substantive interest is less than the number of indicators. It is impossible to estimate more common factors than indicators, but for parsimony’s sake, there is no point in retaining a model with just as many explanatory entities (factors) as there are entities to be explained (indicators) (Mulaik, 2009). The goal of most factor analyses is thus to identify and interpret a smaller number of factors that explains most of the common variance.

The proportion of total variance that is common is called communality, which is estimated by the statistic \(h^2 \). For example, if \(h^2 = .70 \), then 70% of total indicator variance is common and thus potentially explained by underlying factors. The rest, or 30% of the total variance, is unique variance, which is made up of specific variance (systematic but unshared) and measurement (random) error. Specific variance is not explained by common factors; instead, it may be due to characteristics of individual indicators, such as the particular stimuli that make up a task, that also affect observed scores. The various partitions of standardized total indicator variance in factor analysis just described is illustrated in Figure 6.1.

Note in the figure that as the proportion of error variance increases, the proportion of systematic (true) variance decreases, which can in turn reduce the overall proportion of common variance. Statistical analysis of unreliable scores usually leads to inaccurate results, and factor analysis is no exception. In general, score reliabilities that exceed .90 are considered excellent, coefficients in the range of about .80 are considered good, but coefficients appreciably less than .70 are potentially problematic. If \(r_{XX} < .50 \), then most
of total variance is due to measurement error. Indicators with such low score reliabilities should be excluded from the analysis.

6.3 Kinds of Factor Analysis

There are two broad categories of factor analysis, exploratory (EFA) and confirmatory (CFA). Differences between these two techniques are listed next and then discussed afterward:

1. Unrestricted measurement models are estimated in EFA, but it is restricted measurement models that are analyzed in CFA. This means that the researcher must explicitly specify the indicator-factor correspondence in CFA, but there is no option to do so in EFA.

2. Unrestricted measurement models in EFA are not identified, which means there is no unique set of statistical estimates for a particular model. This property concerns the rotation phase, which is part of most applications of EFA. In contrast, CFA models must be identified before they can be analyzed, which means that there is only one exclusive set of estimates. Accordingly, there is no rotation phase in CFA.

3. It is assumed in EFA that the specific variance of each indicator is not shared with that of any other indicator. In contrast, CFA permits, depending on the model, estimation of whether specific variance is shared between pairs of indicators.

4. Output from CFA computer procedures contains the values of numerous fit statistics that assess the fit of the whole model to the data. In contrast, fit statistics are not generally available in standard methods of EFA (including principle components analysis and principle axis factoring, defined later) carried out by computer programs for general statistical analyses, such as SPSS (IBM, Corp, 2012) and SAS/STAT (SAS Institute, Inc., 2012), but some more specialized computer programs, such as Mplus (Muthén & Muthén, 1998–2012), may print certain types of fit statistics for particular EFA methods.

5. Procedures for EFA are available in many computer tools for general statistical analyses, such as SPSS and SAS/STAT. In contrast, more specialized computer tools for structural equation modeling (SEM) are needed for CFA because the latter is the SEM technique for estimating restricted measurement models. Some widely used SEM computer tools include LISREL (Jöreskog & Sörbom, 2012) and Mplus (e.g., Kline, 2010, Chapter 4). The Mplus program has capabilities for both EFA and CFA.

Presented in Figure 6.2 are two hypothetical measurement models for six indicators and two factors represented with symbols from SEM. These include squares or rectangles for observed variables, ellipses or circles for latent variables or error terms, lines with a single arrowhead (→) for presumed direct effects from causal variables to variables affected by them, two-headed curved arrows that exit and re-enter the same variable (↘↘) for variances of factors or error terms; and curved line with two arrowheads (←→) for covariances (in the unstandardized solution) or correlations (in the standardized one) between either pairs of factors or pairs of error terms (Kline, 2010, chap. 5).

Depicted in Figure 6.2(a) is an unrestricted two-factor model of the kind analyzed in EFA. Without specific instruction from the user to do otherwise, an EFA computer procedure could theoretically generate all possible unrestricted factor solutions, which equals the number of indicators. The most basic solution is a single-factor model, which reflects the assumption that all indicators depend on just one common factor. Next is a two-factor model, then a three-factor model, and so on up to the most complex model possible with just as many factors as indicators. In practice, EFA computer procedures rely on default
statistical criteria for determining the number of factors to retain, but these defaults do not always correspond to best practice. These issues are elaborated later in the section about EFA, but the point now is that EFA does not require the researcher to specify the number of factors in advance.

The model in Figure 6.2(a) is unrestricted concerning the correspondence between indicators and factors. In EFA, each indicator is regressed on every factor in the model. The statistical estimates for this part of EFA are actually regression coefficients that may be in either standardized or unstandardized form, just as in the technique of multiple regression. The difference is that predictors in ordinary regression are observed variables, but the predictors in EFA (and CFA, too) are latent variables. For example, there are two lines with single arrowheads that point to indicator X_1 from each of the factors in Figure 6.2(a). These paths represent the presumed direct effects of both factors on X_1, and the proper name of the statistical estimates of these effects is pattern coefficients. Many researchers refer to pattern coefficients as “factor loadings” or just “loadings,” but this term is inherently ambiguous for reasons explained later and thus is not used here. The larger point is that all possible pattern coefficients are calculated for each indicator in EFA.

Pattern coefficients in factor analysis are interpreted just as coefficients in standard multiple regression. Suppose that the unstandardized pattern coefficient for the path $A \rightarrow X_1$...
is 5.25 and that the standardized pattern coefficient for same path is .60. These results indicate that, respectively, (a) a difference of 1 point on factor A predicts a difference of 5.25 points in the raw score metric of X₁, controlling for the other factors, and (b) a difference of a full standard deviation on factor A predicts a difference of .60 standard deviations on X₁, again controlling for all other factors. In multiple regression, standardized coefficients are not generally correlation coefficients when the predictors covary. It is only in the very special case where all intercorrelations among the predictors are zero that standardized regression coefficients are interpreted as correlations. The same distinction holds in factor analysis: When the factors are correlated, the value of an indicator’s standardized pattern coefficient will not typically equal that of its structure coefficient, which is the estimated correlation between an observed variable and a latent variable. It is only when the factors are independent that standardized pattern coefficients will equal the corresponding structure coefficient for every indicator. The failure to correctly distinguish standardized pattern coefficients from structure correlations when the factors are correlated can lead to misinterpretation of the results (Graham, Guthrie, & Thompson, 2003).

Each indicator in Figure 6.2(a) has an error term, which represents unique variance in factor analysis (see Figure 6.1). The curved line with two arrowheads in the figure represents in EFA the possibility to estimate the correlation (or covariance in the unstandardized solution) between factors A and B. Because it is not required in EFA to estimate factor correlations, the curve of the symbol \(\langle \rangle \) in Figure 6.2(a) is presented as dashed instead of solid. When factor correlations are not estimated in EFA, it is assumed that the factors are orthogonal, or all pairwise independent. Most EFA computer procedures by default do not analyze correlated factors. Instead, the user must typically specify a rotation option that permits the factor to covary when the goal is to analyze correlated factors. Whether the computer default to analyze orthogonal factors makes theoretical sense in most applications of EFA is considered later.

Presented in Figure 6.2(b) is a restricted measurement model for two factors and six indicators of the kind analyzed in CFA. In the guise of its covariance structure, the model in Figure 6.2(b) represents the hypotheses that indicators X₁ – X₃ measure factor A, indicators X₄ – X₆ measure factor B, and the factors covary. This particular model is a standard CFA model with the characteristics listed next:

1. Each indicator is represented as having two causes—a single factor that the indicator is supposed to measure and all other unique sources of influence represented by the error term (e.g., \(A \rightarrow X₁ \leftarrow E₁ \)). In CFA models with \(\geq 2 \) factors, this property implies that some pattern coefficients are zero. For example, there is no path that connects factor B with indicator X₁ in Figure 6.2(b). This specification reflects the hypothesis that X₁ does not depend on B. It also implies that the pattern coefficient for the direct effect of B on X₁ is assumed to equal zero and, consequently, the computer will not estimate this direct effect. As mentioned, it is the researcher who specifies the particular pattern coefficients to be estimated in CFA, not the computer as in EFA.

2. All possible pairs of factors are assumed to covary in CFA models. This assumption is represented in Figure 6.2(b) by the specification \(A \bowtie B \), where the curve in the symbol \(\bowtie \) is shown as solid instead of dashed. In models with \(\geq 3 \) factors, every pair of factors is connected by the symbol \(\bowtie \) for a covariance. Although it is theoretically possible in CFA to analyze a measurement models where some factors are assumed to be unrelated, such models are not standard models. In fact, some SEM computer tools automatically specify correlations between every pair factors in CFA measurement models.
3. The error terms in the CFA model of Figure 6.2(b) are independent of each other, which reflects the same assumption as in EFA that indicator specific variances do not overlap. However, it may be possible in CFA to estimate error correlations (standardized) or error covariances (unstandardized) between some pairs of indicators. Suppose that X_1 and X_7 are the only two indicators in a larger set based on the self-report method. Because they share a common method, scores on X_1 and X_7 may covary even if each indicator depends on a different factor. Specific variances of repeated measures variables may also overlap, a pattern called autocorrelation. Correlated errors are represented in CFA model diagrams with the same symbol as for factor correlations, such as $E_1 \leftrightarrow E_7$ for the indicator pair X_1 and X_7.

Standard CFA models specify unidimensional measurement for all indicators. There are two different ways to specify multidimensional measurement, which also implies a non-standard CFA model: if any indicator is regressed on 2 or more factors (i.e., there are ≥ 2 pattern coefficients for the same indicator) or if correlated errors are specified. For example, adding the direct effect $B \rightarrow X_1$ to the model of Figure 6.2(b) would specify multidimensional measurement. There is controversy about allowing indicators to depend on more than one factor. On the one hand, some indicators may actually measure more than one domain. An engineering aptitude test with text and diagrams, for instance, may measure both verbal and visual-spatial reasoning. On the other hand, unidimensional models offer more precise tests of convergent validity and discriminant validity. A set of variables presumed to measure the same construct shows convergent validity if their intercorrelations are at least moderate in magnitude. In contrast, a set of variables presumed to measure different constructs shows discriminant validity if their intercorrelations are not too high. If $r_{XY} = .90$, for instance, then we can hardly say that variables X and Y measure distinct constructs.

The numerals (1) that appear in Figure 6.2(b) next to paths that point to indicators or error terms are scaling constants that represent the assignment of a scale or metric. Because factors and error terms are not directly measured, they require a scale before the computer can generate statistical estimates for them. For example, the specification

$$E_1 \rightarrow X_1 = 1.0$$

in Figure 6.2(b) scales the error term so that its variance is related to that of the unexplained variance in the corresponding indicator. The specifications

$$A \rightarrow X_1 = 1.0 \text{ and } B \rightarrow X_4 = 1.0$$

in the figure scale the factors such that their variances are related to that of the explained (common) variance of the corresponding indicator. Because the scales of X_1 and X_4 are “borrowed” in order to scale the factors, each of these indicators is a reference variable. Assuming that indicators of the same factor have equally reliable scores, it is actually arbitrary which indicator is selected as the reference variable, but both factors and error terms must be assigned scales in CFA (and in SEM, too). Some SEM computer programs, such as LISREL and Mplus, scale factors and error terms automatically, but other programs may require the user to explicitly scale each of these variables. There are actually scaling constants in EFA, but computer procedures for EFA automatically assign these constants as part of the analysis.

Readers should not overinterpret the labels “exploratory” and “confirmatory.” It is true that EFA does not require a priori hypotheses about factor-indicator correspondence or
even the number of factors. However, there are ways to conduct EFA in a more confirmatory mode, such as instructing the computer to extract a certain number of factors based on theory. Also, the technique of CFA is not strictly confirmatory. Specifically, it happens in perhaps most analyses that the initial restricted measurement model does not fit the data. In this case, the researcher typically modifies the hypotheses on which the initial model was based and specifies a revised model. The respecified model is then tested again with the same data. The goal of this process is to “discover” a model with three properties: It makes theoretical sense, it is reasonably parsimonious, and its correspondence to the data is acceptably close.

This is a good point to mention two critical issues in factor analysis. One is the factor indeterminacy problem, which is that hypothetical constructs can basically never be uniquely determined by their indicators. This means that although the results of a factor analysis might indicate that a particular measurement model is consistent with observed covariances, there may be nevertheless be other factor structures just as consistent with the same data. A more modern expression of the same idea refers to the problem of equivalent models, and for measurement models with multiple factors there are actually infinitely many equivalent versions. This is not a fatal flaw of factor analysis but instead a characteristic of statistical modeling in general. As noted by Mulaik (1987), such techniques are best seen as hypothesis-generating methods that support inductive reasoning but do not produce definitive, incontrovertible results. The second critical issue concerns the naming fallacy, or the false belief that the name assigned to a factor by a researcher means that the hypothetical construct is understood or even correctly labeled. Factor names are descriptions, not explanations, so we cannot assume that a particular factor label is necessarily the correct one. An example where the same two factors are assigned different labels by different researchers is presented later, but factor labels should be considered as hypotheses and not as substitutes for critical thinking.

6.4 Decision Points in Factor Analysis

Listed next are the basic decision points in factor analysis:

1. Whether factor analysis is the appropriate technique and, if so, whether to use EFA or CFA
2. The set of indicators to be analyzed and the composition and size (N) of the sample
3. The data matrix to be analyzed; the basic choice is between a correlation matrix versus a covariance matrix

6.4.1 When Factor Analysis is Appropriate

The decision whether to conduct a factor analysis is usually not complicated. This is because the technique’s basic purpose—description of latent variables that explain observed correlations—is pretty straightforward. Differences between EFA and CFA were considered in the previous section. The technique of EFA may be a better choice in less mature research areas where basic measurement questions are not yet resolved. It also requires fewer a priori assumptions than CFA, which tests stronger hypotheses than EFA. In assessment research, EFA tends to be used in earlier studies and CFA in later studies in the same area. The selection of EFA or CFA implies additional decision point specific to each technique that are explained later in this chapter. Considered next are decisions that apply to both EFA and CFA.
6.4.2 Indicator Selection

The selection of indicators is critical because the quality of what comes out of a factor analysis (the results) depends heavily on the nature and quality of scores analyzed. Summarized next are recommendations by Fabrigar et al. (1999) concerning indicator selection: First, the researcher must define the hypothetical constructs of interest. For example, if the goal is to delineate dimensions of anxiety, then the researcher should consult relevant theoretical and empirical works about the nature and number of factors, such as state anxiety, trait anxiety, anticipatory anxiety, social anxiety, and so on. Next, candidate indicators that as a set adequately sample the different domains should be identified. Ideally, not all indicators will rely on the same method of measurement, such as assessment of anxiety through self-report questionnaires only. This is because common method variance can affect all scores regardless of common latent variables. For instance, it is frequent in anxiety studies to measure physiological variables, such as heart rate or galvanic skin response, in addition to self-report.

It is also generally necessary to select multiple indicators of each presumed dimension. Multiple-indicator measurement not only tends to sample more facets of constructs of interest, but technical problems in the analysis are more likely to happen if some factors have too few indicators. This is especially true in small samples where some factors have just 2 indicators. In general, there should be at least 3–5 indicators for each anticipated factor. If a total of four anxiety dimensions are expected, for instance, then the minimum number of indicators would about 12–20. But sometimes there are few theoretical or empirical bases for predicting the number of factors before conducting the analysis. In this case, the researcher must nevertheless try to delineate the population of indicators and then measure as many as possible in a sufficiently large sample (Fabrigar et al., 1999). It is also crucial to select indicators with good psychometric characteristics.

As in most behavioral science studies, the sample should be representative of the population to which the results should generalize. For factor analysis, the sample should also be (a) relatively heterogeneous on the indicators but (b) relatively homogenous on other variables that do not covary substantially with the indicators (Mulaik, 2009). Because factor analysis is essentially a regression technique where the predictors are latent variables, its results can be distorted by range restriction. Suppose that a researcher administers cognitive and scholastic ability tests within a sample of school children enrolled in programs for the gifted. Because the range of individual differences among gifted children on these may be relatively narrow, absolute magnitudes of intercorrelations among the tests may be restricted compared with a general sample of students. Because correlation is the “fuel” of factor analysis, results in range-restricted samples may not be very meaningful. However, relative homogeneity among participants on other variables, such as demographic characteristics, that are not strongly related to the indicators helps to ensure that the factors affect scores of all cases the same way. That is, the same basic measurement model should hold for all cases (Mulaik, 2009).

6.4.3 Sample Size

A critical question concerns minimum sample sizes required for the analysis. In general, factor analysis is a large sample technique, so the more cases the better. (This assumes that a larger sample is just as representative as a smaller one.) Early sample size recommendations for EFA were based on ratios of the number of cases to the number of indicators. For example, the recommendation for a 10:1 ratio means that there are at least 10 cases for every indicator, so an analysis of 10 indicators would require a minimum sample size of
100; a more stringent 20:1 ratio would require at least $N = 200$ for 10 indicators, and so on. There are two problems with such guidelines. First, there is no clear consensus in the literature about the optimal cases-to-indicators ratios for EFA. A 10:1 ratio is probably the most common guideline, but some methodologists advocate even higher ratios, such as 20:1. Second, sample size requirements depend on the population (true) factor model. Specifically, fewer cases are needed when each factor has at least 3–4 indicators and average communalities across the indicators are about .70 or higher (e.g., MacCallum, Widaman, Zhang, & Hong, 1999). In this ideal scenario, a 10:1 cases-to-indicators ratio may suffice, but absolute sample sizes less than 100 may be untenable in factor analysis. A minimum sample size of 200 seems more defensible. However, cases-to-indicators ratios that exceed 20:1 and minimum sample sizes of 400 or more may be required when the ideal conditions just listed do not hold (Fabrigar et al., 1999).

Results of some reviews suggest that sample sizes in published EFA studies are typically too small. For example, Costello and Osborne (2005) surveyed a total of 305 factor analytic studies published over a two-year period and listed in the PsychINFO database. Most of these analyses (63%) were conducted with cases-to-indicators ratios <10:1, and a total of 41% were based on ratios < 5:1. Only 21% of the studies featured cases-to-indicators ratios > 20:1. In a separate computer simulation study where factor analyses were conducted in generated samples of different sizes, Costello and Osborne (2005) found that most factor solutions based on cases-to-indicators ratios <10:1 were incorrect. When the ratio is 2:1, however, the rate of incorrect results was 90%, and almost one-third of these analyses failed due to technical problems.

Ratio-type recommendations for minimum sample sizes in CFA are not based on the number of indicators but instead on the number of parameters in the entire measurement model. In CFA, parameters include pattern coefficients, error variances and covariances (i.e., for correlated errors), and factor variances and covariances. Models with more parameters—even for the same number of indicators—require more estimates, so larger samples are necessary in order for the results to be reasonably precise. Sample size requirements in CFA also vary with the type of estimation method used and the distributional characteristics of the data. In general, somewhat smaller sample sizes are needed when the standard estimation method in SEM, maximum likelihood (ML) estimation, is used and the distributions are multivariate normal. In this case, a 20:1 ratio is recommended, that is, there should be at least 20 cases for each model parameter estimated in the analysis (e.g., Jackson, 2003). A “typical” sample size in SEM is about 200 (e.g., Shah & Goldstein, 2006), which may be adequate for analyzing a CFA model with 10 or so parameters. However, much larger sample sizes may be needed when a method other than ML estimation is used or distributions are severely non-normal. Another framework for estimating minimum sample sizes in CFA involves estimation of the statistical power of tests about either individual parameters or about the fit of the whole model to the data. A variation is to specify a target level of power, such as .80, and then estimate the minimum sample size needed for that target—see MacCallum, Browne, and Sugawara (1996) and Kline (2010, chapter 8) for more information.

6.5 Data Matrix Analyzed

Most researchers input raw data files for computer statistical analyses. These same researchers may be surprised to learn that the raw data themselves are not necessary for most types of factor analysis. Specifically, if a raw data file is submitted, the computer will create its own matrix summary of the data, which is then analyzed. It is also possible in many computer tools to input a matrix summary instead of raw data. The capability to analyze summary statistics also provides the basis for a secondary analysis in which data
collected by others are reanalyzed but where the raw data are unavailable. Many journal articles about the results of factor analysis contain enough information, such as correlations and standard deviations, to create a matrix summary of the data, which can then be submitted to a computer program for analysis. Thus, readers of these works can, with no access to the raw data, replicate the original analyses or estimate alternative models not considered in the original work. This is why it is best practice for researchers to report sufficient summary statistics for a future secondary analysis.

There are two basic types of matrix summaries of raw data, a Pearson correlation \((r)\) matrix and a covariance \((\text{cov})\) matrix. The default matrix analyzed in most EFA computer procedures is a correlation matrix. Pearson correlations measure the degree of linear association between two continuous variables. Specifically, \(r\) measures the degree to which the rank order of scores on one variable corresponds to the rank order on the other variable also taking account of the relative distances between the scores. The entries in the diagonal of a correlation matrix all equal 1.0, which are also the variances of all variables in a standardized metric.

The default data matrix in SEM computer programs is the covariance matrix. This is because the standard method in SEM, ML estimation, analyzes unstandardized variables. It is possible in SEM to fit a CFA model to a correlation matrix, but special methods are needed (Kline, 2010, chapter 7). The diagonal entries in a covariance matrix are the variances of the indicators in their original (unstandardized) metrics. The off-diagonal entries are the covariances, which for two continuous variables \(X\) and \(Y\) is

\[
\text{cov} = r \, SD_X \, SD_Y
\]

(6.4)

where \(r\) is the Pearson correlation and \(SD_X\) and \(SD_Y\) are their standard deviations. A covariance thus represents the strength of the association between \(X\) and \(Y\) and their variabilities, albeit with a single number. Because the covariance is an unstandardized statistic, its value has no upper or lower bound. For example, covariances of, say, –1.003.26 or 13.58 are possible. The statistic \(\text{cov}\) encapsulates all the information measured by \(r\) plus the degree of “spreadoutedness” of the scores on both indicators (B. Thompson, 2004).

Because the information conveyed by \(\text{cov}\) and \(r\) is not the same, it can happen that the fit of a measurement model to a correlation matrix is not the same as the fit of the same model to a covariance matrix in the same sample. Also, the factor analysis of a covariance matrix generates two sets of estimates, an unstandardized solution and a standardized solution. Only the latter is calculated by the computer when a correlation matrix is analyzed. For all these reasons, think carefully about the choice of which type of data matrix to analyze and report that choice in written summaries of the results. Finally, the analysis of correlations or covariances assumes that the indicators are continuous variables. This is most likely to be true when each indicator is a scale that generates a total score over a set of items. However, individual items with Likert-type response formats (e.g., 0 = disagree, 1 = uncertain, 2 = agree) are not continuous variables. Instead, they are generally considered to be ordinal, and their distributions tend to be non-normal. Therefore, analyzing a Pearson correlation matrix (or the corresponding covariance matrix) when the indicators are items may not be appropriate. The analysis of items in factor analysis is considered later in this chapter; the discussion that follows assume the analysis of scales.

6.6 Exploratory Factor Analysis

Summarized next is the typical sequence of additional decisions in EFA. These steps are sometimes iterative because results at a later phase may necessitate a return to an earlier step:
Select a method of factor extraction. The most basic choice is between principal axes factoring (PAF)—also known as common factor analysis—and principal components analysis (PCA). The PCA method is the default in some EFA computer procedures, such as SPSS, but this option is not always the best.

Decide how many factors to retain. There are two kinds of criteria for making this choice, theoretical and statistical. Of the two, theoretical criteria may result in less capitalization on sample-specific (chance) variation than statistical criteria.

Select a rotation method and interpret the factors. The goal of rotation is to enhance the interpretability of the retained factors. There are many different rotation methods, but the most basic choice is between some type of orthogonal rotation where the factors are independent or oblique rotation where the factors are allowed to covary. The default method in most EFA computer procedures is orthogonal rotation, but this option is not always ideal.

6.6.1 Factor Extraction Method

The difference between PAF and PCA—and the only difference—is the form of the data matrix analyzed (B. Thompson, 2004). The PCA method assumes that all indicator variance is common (shared) variance. The assumption is strict because it does not allow for specific variance or measurement error (see Figure 6.1); that is, the method assumes that the scores are perfectly reliable. Accordingly, all observed variance is analyzed in PCA. This means that the correlation matrix analyzed by PCA has diagonal entries that all equal 1.0, which is literally all the observed variance in standardized form. The data matrix analyzed in PCA is thus called an unreduced correlation matrix. In contrast, the PAF method analyzes common variance only. This means that the diagonal entries of 1.0 in the correlation matrix are replaced in the PAF method by b^2 statistics, or estimated communalities for each indicator. Suppose that the estimated communality for indicator X_3 is .75. In the correlation matrix, the 1.0 in the diagonal entry for X_3 will be replaced by .75 in PAF. All remaining diagonal entries of 1.0 are also replaced by the corresponding b^2 value for each of the other indicators, and in each case $b^2 \leq 1.0$. Thus, it is a reduced correlation matrix that is analyzed in PAF. When a covariance matrix is analyzed, the diagonal entries in PAF are replaced by the product of the sample variance and the communality estimate for each indicator. Because the PAF method analyzes common variance, it does not assume perfect score reliability.

Statistical procedures for PAF typically use an iterative method to estimate communalities where the computer derives initial estimates and then attempts to improve these estimates through subsequent cycles of calculations. The default initial estimate for each indicator is usually the squared multiple correlation (SMC) between that indicator and all rest. For example, if SMC = .60 for indicator X_4, then 60% of the observed variance in X_4 is explained by all the other indicators. However, sample correlations (and squared correlations, too) can be attenuated by measurement error, and iterative estimation takes account of this phenomenon. Sometimes in PAF it happens that iterative estimation fails, that is, the computer is unable to derive a final set of communality estimates. Iteration failure may be indicated by a warning or error message in the output. Any subsequent estimates in the rest of the output should be ignored. Another sign of trouble are Heywood cases, or estimates that are mathematically impossible, such as a structure coefficient >1.0 or a negative (<0) estimate of error variance. Solutions with Heywood cases are inadmissible and warrant no further interpretation. Some PAF computer procedures allow the user to increase the default limit on the number of iterations, which gives the computer more “tries” and may solve the problem. Some programs also accept user-specified initial
The conceptual difference between PAF and PCA is that factors in PCA are estimated as composites, or weighted linear combinations of the indicators (i.e., total scores). However, factors in PAF have the status of latent variables that are estimated taking account of measurement error. For example, the representation of the two-factor, six-indicator model in Figure 6.2(b) is consistent with the PAF method because common variance is analyzed apart from unique variance, which corresponds to the error terms in the figure. Presented in Figure 6.3 is a depiction of a two-factor, six-indicator model analyzed in PCA. The factors in Figure 6.3 are each represented with hexagons, which some authors use in model diagrams to represent composites. The lines with single arrowheads that point from the indicators to the factors represent the fact that factors are estimated as weighted total scores across the indicators in PCA. From this perspective, indicators are the predictors in PCA, but the predictors in PAF are the factors (compare Figure 6.2(b) and Figure 6.3).

The dashed line in the symbol for a covariance (\(\mathbf{\Sigma}\)) in Figure 6.3 represents the possibility for an oblique factor rotation in PCA.

Because the PCA method analyzes observed variables only, some methodologists do not consider it to be a “true” method of factor analysis. Instead, PCA is described by those who hold this view as a mere data reduction technique that replaces a set of correlated variables with a smaller set of orthogonal composites, not as method for estimating latent variables. Others refer to the composites generated in PCA as “components” instead of “factors.” There has been much debate in the literature about the relative merits of PCA versus PAF (e.g., Mulaik, 1992), some of it quite rancorous. It helps to know that PAF and PCA tend to generate similar solutions when scores on all indicators are very reliable, each indicator depends mainly on just one factor, all communalities are relatively high, and the sample size is large (e.g., Velicer & Jackson, 1990). Otherwise, the two methods can generate appreciably different estimates when applied to the same data. Results of PCA and PAF also tend to converge as more and more indicators are analyzed. This happens because the number of diagonal elements as a proportion of all the elements in a data matrix decreases as the number of variables increases (B. Thompson, 2004), and PCA and

![Diagram](image_url)

Figure 6.3 Conceptual representation of principal components analysis for 6 indicators and 2 composites (components).
PAF analyze the same data matrix except for the diagonal entries. In SPSS, the initial factor solution is extracted using PCA even if the user requested PAF extraction for the final solution. In general, PAF is a better choice than PCA when not all score reliabilities are high (e.g., $r_{xx} > .80$).

Some other EFA extraction methods are briefly described next; see Mulaik (2009, chapter 7) for more information. The method of \textit{alpha factor analysis} is a generalization of the internal consistency reliability coefficient (i.e., Cronbach’s alpha) but in this case applied to indicators of different factors instead of to items within the same test. This method associates indicators with factors in a way that maximizes the internal consistency of construct measurement. The method of \textit{image analysis} minimizes the chance that a factor will be defined mainly by a single indicator. This outcome is undesirable in factor analysis because \textit{single-indicator measurement} is generally imprecise compared with multiple-indicator measurement. Image analysis works by minimizing the effect of specific variance on the results. In \textit{maximum likelihood factor analysis}, the method of ML estimation is used to derive common factors that reproduce sample correlations among the indicators as close as possible. The method also generates statistical tests of parameter estimates, including the pattern coefficients and factor correlations. In contrast, these kinds of statistical tests are not available in the PAF and PCA methods. In SPSS, the ML method is applied to correlation matrices only.

\subsection*{6.6.2 Number of Retained Factors}

Sometimes the decision about the number of factors to retain is determined by theory, such as when a cognitive ability test battery is constructed in order to assess three different underlying domains. In this case, it makes sense to specify a three-factor solution. Even when theory indicates a specific number of factors, many researchers will nevertheless inspect a range of factor solutions, such as solutions with two, three, or four factors for the example just mentioned. Doing so not only evaluates the original hypothesis about the presence of three factors; it also allows for alternative explanations (i.e., two or four factors) to be tested. There are also various statistical criteria for determining the number of retained factors. It is best not to blindly apply these criteria because doing so tends to capitalize on chance variation in a particular sample. Instead, a researcher should inspect statistical criteria in light of extant theory.

This first statistical criterion is the default basis in most EFA computer procedures for determining the number of retained factors, but this method is not always the best choice. It is the \textit{eigenvalue >1.0 rule}, also known as the \textit{Kaiser criterion} or \textit{K1 rule} after the educational statistician Henry F. Kaiser. Every extracted factor in EFA has its own \textit{eigenvalue}, which is a measure of the proportion of variance in the indicators explained by that factor and is designated by the symbol λ. The first extracted factor tends to have the highest eigenvalue, and eigenvalues tend to successively decrease as additional factors are extracted. An eigenvalue is the sum of the squared structure coefficients across all the indicators. If $\lambda = 1.0$, then the amount of variance explained by that factor corresponds to the amount of information in one indicator, and if $\lambda = 2.0$, the explanatory power corresponds to the variability of two indicators, and so on. The ratio λ/n, where n is the number of indicators is the proportion of total variance explained by the associated factor. The sum of the eigenvalues for all possible factors equals the number of indicators, and the ratio of the sum of the eigenvalues across all retained factors divided by the number of indicators is the total proportion of variance explained by the factors as a set (B. Thompson, 2004). These proportions of explained variance are another type of variance-accounted-for effect size in EFA. The $\lambda > 1.0$ rule thus requires that a factor explains at least one “unit” of information in
terms of the indicators. However, note that the $\lambda > 1.0$ rule applies to factors extracted using the PCA method, not the PAF method. Indeed, it is a mistake to apply this rule when a reduced correlation or covariance matrix is analyzed (Fabrigar et al., 1999).

There are two problems with blindly following the $\lambda > 1.0$ rule. First, sampling error affects the estimation of eigenvalues, which ignores that the fact that $\lambda = 1.01$ versus $\lambda = .99$ leads to categorically different outcomes (i.e., retain vs. do not retain) under this rule. Second, factor solutions determined by the $\lambda > 1.0$ rule tend to have too many factors but also occasionally too few factors (e.g., Velicer & Jackson, 1990). In general, the $\lambda > 1.0$ rule is not a sound basis for deciding how many factors to retain. A variation is the Cattell scree test (after the psychologist Raymond B. Cattell), which is a visual heuristic that involves making a line graph where eigenvalues are plotted on the Y-axis for each of the total possible number of factors, which are represented on the X-axis. The graph is then visually inspected in order to locate the point where the drop in eigenvalues over successive factors levels out and from which the slope of the line is basically horizontal. The number of retained factors in this approach corresponds to the number of eigenvalues before the last substantial drop in the graph. A drawback of the scree test is that its interpretation can be rather subjective in that two different researchers can come to different conclusions after inspecting the same plot.

A more sophisticated method based on eigenvalues is that of parallel analysis, which involves the comparison of observed eigenvalues against those expected from random data. One way to conduct a parallel analysis is to use a computer procedure to randomize the scores for each variable in a raw data file. The randomized scores have the same distributional characteristics of the original scores, but their expected intercorrelations are about zero. Next, eigenvalues from the analysis of the randomized scores are compared against those from the original data. Factors are retained whenever the eigenvalues based on the original scores are greater than the eigenvalues for the corresponding factors based on the randomized scores. Suppose that the eigenvalues for the first three factors based on analyzing the original scores are, respectively, 5.525, 2.350, and 1.026. The corresponding eigenvalues based on the randomized scores are 2.770, 1.850, and 1.332. This pattern suggests that first two factors should be retained but not the third because 1.332 (based on the randomized scores) is greater than 1.026 (based on the original scores). Results of computer simulation studies about parallel analysis have generally been favorable (e.g., Crawford et al., 2010), but Fabrigar et al. (1999) noted that the decision to retain factors can be rather arbitrary when the pair of eigenvalues for a particular factor are very similar.

Most researchers retain fewer factors than the number of indicators, and such solutions typically explain some proportion of the total variance of the indicators, but usually not all of it. This also means that the factors will not perfectly explain the sample correlations (i.e., the data). Many EFA computer procedures optionally print predicted correlations—also called reproduced correlations—and residual correlations. The former are the values of predicted Pearson correlations for the set of indicators, given the factor solution, and the latter are the differences between the observed and predicted correlations for each indicator. The lower the residuals in absolute value, the better the explanatory power of a factor solution. There is no absolute cut-off for interpreting residual correlations, but a better result is indicated if all absolute residuals are < .05. However, absolute residuals >.10 suggest poor prediction of the corresponding correlation.

It is generally better in EFA to extract too many factors, or overfactoring, than to retain too few, or underfactoring. This is because there tends to be substantial error in the results with under-factoring. For example, estimation of pattern coefficients of indicators that actually depend on a factor may complicate accurate estimation of coefficients of other indicators that measure retained factors. Two factors that are really distinct may be merged
in a model with too few factors, which may complicate interpretation of the underlying latent variables (Fabrigar et al., 1999). Over-factoring is not without penalty, including the interpretation of factors that do really correspond to hypothetical constructs in the population. Overfactoring is also a potential drawback of the $\lambda > 1.0$ rule.

6.6.3 Method of Rotation

The option for rotation does not apply when only a single factor is retained; otherwise, rotation is part of just about all analyses of multifactor models in EFA. The initial factor solution is often difficult to interpret. This is because the structure coefficients for the associations between the first factor and all indicators tend to uniformly high, and patterns of correlations with the remaining factors may not be very distinct. The goal of rotation is to make the meaning of the factors more obvious to the researcher. It works by reweighting the initial factors (i.e., the factor axes are shifted) according to statistical criteria that vary with the particular method of rotation. The desired outcome is a rotated solution that exhibits **simple structure** where each factor explains as much variance as possible in nonoverlapping sets of indicators. That is, the structure coefficients for the rotated factors should head toward either 0 or 1.0 in order to make the associations between factors and indicators more distinct. Theoretically, there are an infinite number of possible factor rotations for a given solution. In practice, either the researcher specifies a rotation option in a computer procedure for EFA or the computer will employ its default method.

There are two main classes of rotation methods in EFA. In **orthogonal rotation**, the rotated factors are all uncorrelated just as they are in the initial solution. Consequently, values of the standardized pattern coefficient and the structure coefficient for each indicator are equal. The most widely used rotation method of any kind is Kaiser’s **varimax rotation**, which is also the default in SPSS. Varimax rotation maximizes the variance of the structure coefficients (i.e., it pushes them toward 0 or 1.0) for each factor, which tends to (a) limit the number of indicators with high correlations with that factor and (b) evenly distribute the indicators across the factors. This method is used so often because it generally yields simple structure in perhaps most EFA studies where the factors are uncorrelated (B. Thompson, 2004). A related method is **quartimax rotation**, which maximizes the variance of the structure coefficients for each indicator. This tends to yield a factor solution with a general factor that correlates highly with most indicators and lesser factors each associated with different subsets of indicators. The method of **equamax rotation** offers a kind of “comprise” in that it maximizes a weighted function of the criteria from the varimax method and the quartimax method. Selection among these alternatives for orthogonal rotation should be guided by the researcher’s hypotheses about the anticipated model.

The assumption of all orthogonal rotation methods is that the underlying constructs are uncorrelated, but this hypothesis is not always defensible (Fabrigar et al., 1999). For example, it makes little sense that various latent cognitive abilities, such as verbal reasoning, visual-spatial reasoning, and memory, would be unrelated to each other. It seems just as implausible to presume that certain latent affective domains, such as anxiety and depression, are independent. Methods of oblique rotation allow the factors to covary; that is, they estimate measurement models with correlated factors. Note that the specification of oblique rotation does not somehow “force” the factors to covary. Instead, these methods estimate factor correlations, given the data, so these estimates are “allowed” to be close to zero, if such estimates are consistent with the data. However, if an estimated factor correlation is extremely high (e.g., > .90), then the two factors are clearly not distinct (i.e., there are too many factors). Also, the pattern coefficients and the structure coefficient for the same indicator are typically unequal when the factors covary.
Promax rotation is probably the most widely used oblique rotation method. It usually begins with a varimax-rotated solution and then raises the pattern coefficients to a higher power κ (kappa), which tends to force near-zero coefficients to approach zero faster than coefficients further from zero (Mulaik, 2009). The procedure then generates least squares estimates of the target matrix just described by allowing the factors to covary. A parameter of promax rotation is κ, or the power to which coefficients in the target matrix are raised. Values of κ usually range from 1 through 4, where higher values permit higher absolute estimates of factor correlations that are consistent with data. The default in SPSS is $\kappa = 4$, and it is usually unnecessary to change this value. Another oblique method is direct oblimin rotation, which is a member of a family of oblimin methods that generally minimize the variance of the pattern coefficients across different factors while estimating factor correlations. The parameter for direct oblimin rotation in SPSS is referred to as δ (delta), which ranges from negative to positive in value up to a maximum of .80 (i.e., $\delta \leq .80$). Lower values of δ tend to decrease absolute estimates of factor correlations and higher values result in just the opposite. The default in SPSS is $\delta = 0$, and is rarely necessary to specify a different value.

A potential drawback of oblique rotation is that interpretation of the factors may be more difficult. One reason is that there are two sets of standardized coefficients, pattern and structure, and it can happen that and their values for the same indicator are quite different. For example, if an indicator’s structure coefficient is about zero but its pattern coefficient is not, then a suppression effect is indicated. This means that the indicator contributes to the factor indirectly by changing the relations of other indicators to the same factor (B. Thompson, 2004). Another sign of suppression is when the signs of the pattern coefficient and structure coefficients for the same indicator are different. A second complication of oblique rotation is that there are few guidelines for applied researchers concerning the specification of values of parameters for the promax and oblimin methods other than the default values that would be suitable for a particular set of indicators (Costello & Osborne, 2005).

There are many other rotation methods in EFA, and it can be difficult to decide which method is best. There is also some degree of trial and error in their use. For example, it could happen in a particular analysis that a promax oblique rotation generates results that are easier to interpret than an oblimin oblique rotation. However, if the results are dramatically different after application of different rotation methods, then there may be little basis to pick one solution or the other when no replication sample is available. However, a robust underlying measurement model with simple structure assessed with psychometrically sound indicators should be detected by different rotation methods. See Mulaik (2009, Chapters 10–12) for more information about factor rotation in EFA.

6.6.4 Empirical Example

The first edition of the Kaufman Assessment Battery for Children (KABC-I; Kaufman & Kaufman, 1983) is an individually-administered cognitive ability test for children ages 2½–12½ years old. The test’s authors claimed that the KABC-I’s eight subtests measure two factors. The three tasks believed to reflect sequential processing all require the correct recall of auditory stimuli (Number Recall, Word Order) or visual stimuli (Hand Movements) in a particular order. The other five tasks—Gestalt Closure, Triangles, Spatial Memory, Matrix Analogies, and Photo Series—are supposed to measure more holistic, less order-dependent reasoning, or simultaneous processing. Each of these tasks requires that the child grasps a gestalt but with somewhat different formats and stimuli that all
Table 6.1 Input data (correlations, standard deviations, and means) for analysis of a 2-factor model of the Kaufman Assessment Battery for Children–1st Edition.

<table>
<thead>
<tr>
<th>Subtest</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Hand Movements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Number Recall</td>
<td>.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Word Order</td>
<td>.35</td>
<td>.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simultaneous scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Gestalt Closure</td>
<td>.21</td>
<td>.11</td>
<td>.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Triangles</td>
<td>.32</td>
<td>.27</td>
<td>.29</td>
<td>.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Spatial Memory</td>
<td>.40</td>
<td>.29</td>
<td>.28</td>
<td>.30</td>
<td>.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Matrix Analogies</td>
<td>.39</td>
<td>.32</td>
<td>.30</td>
<td>.31</td>
<td>.42</td>
<td>.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Photo Series</td>
<td>.39</td>
<td>.29</td>
<td>.37</td>
<td>.42</td>
<td>.58</td>
<td>.51</td>
<td>.42</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Note: SMC = squared multiple correlation. Input data and score reliabilities (split-half coefficients) are from Kaufman and Kaufman (1983), \(N = 200 \).

involve visual stimuli. The data for this analysis from the test’s standardization sample for 10-year old children \((N = 200) \) are summarized in Table 6.1. Also reported in the table are score reliability coefficients and SMC values for each indicator.

The SPSS syntax listed in Appendix 6.1 submits the summary statistics from Table 6.1 for EFA with the PAF method of factor extraction. A two-factor model is specified with varimax rotation in the first analysis and with promax rotation in the second. The data matrix in both analyses is the correlation matrix of the indicators. Iterative estimation failed in the first attempt to analyze the data because the default limit on the number of iterations (25) was exceeded. The error message generated by SPSS is listed next:

Attempted to extract 2 factors. More than 25 iterations required. Extraction was terminated.

This warning sounds innocuous, but it indicates a serious problem. The number of iterations was increased to 50 (see Appendix 6.1), and the second run of SPSS terminated normally with a converged and admissible solution.

Listed in the left side of Table 6.2 are the eigenvalues and corresponding percentages of total explained variance for each of the eight factors in the initial solution extracted with PCA of the unreduced correlation matrix. For example, the eigenvalue for the first initial factor is \(\lambda_1 = 3.536 \), so this factor accounts for \(3.536/8 = .442 \), or 44.20% of the variance across all indicators. As expected, the next 7 initial factors explain successively decreasing percentages of variance, and all eight factors together explain a total
of 100% of the variance. A scree plot of the eigenvalues from the initial factors solution is presented in Figure 6.4.

The shape of the plot more or less levels out after extraction of the second factor, which is consistent with the specification of a two-factor model. Values of all absolute residual correlations are < .05, which says that the two-factor model explains the observed correlations reasonably well. Because no raw data file was available for this analysis, the method of parallel analysis based on randomizing the scores cannot be applied. Reported

Table 6.2 Eigenvalues and percentages of explained variance for analysis of an exploratory 2-factor model of the Kaufman Assessment Battery for Children–1st Edition.

<table>
<thead>
<tr>
<th>Factor</th>
<th>PCA</th>
<th>PAF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eigenvalue</td>
<td>% variance</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>1</td>
<td>3.536</td>
<td>44.20</td>
</tr>
<tr>
<td>2</td>
<td>1.239</td>
<td>15.49</td>
</tr>
<tr>
<td>3</td>
<td>.743</td>
<td>9.29</td>
</tr>
<tr>
<td>4</td>
<td>.649</td>
<td>8.11</td>
</tr>
<tr>
<td>5</td>
<td>.597</td>
<td>7.46</td>
</tr>
<tr>
<td>6</td>
<td>.510</td>
<td>6.38</td>
</tr>
<tr>
<td>7</td>
<td>.416</td>
<td>5.21</td>
</tr>
<tr>
<td>8</td>
<td>.309</td>
<td>3.86</td>
</tr>
</tbody>
</table>

Note. PCA = principal components analysis; PAF = principal axes factoring. All factors are unrotated.

Figure 6.4 Scree plot for a principal components analysis of Kaufman Assessment Battery for Children–1st Edition subtests.
in the right side of Table 6.2 are the eigenvalues and percentages of explained variance for the two factors extracted with PAF of the reduced correlation matrix. As expected, the eigenvalues for the two retained factors in the PAF solution are each lower the corresponding first two factors in the PCA solution. This happens because common variance only is analyzed in PAF, but common variance is just a fraction of total variance (see Figure 6.1). Together the first two PAF-extracted factors explain 48.97% of the total variance.

Presented in Table 6.3 are the initial and final communality estimates for each of the eight indicators from the PAF results. Note in Table 6.3 that the initial estimate for each indicator equals the SMC of that indicator with all others in the sample (see Table 6.1). The final set of communality estimates in Table 6.3 is from converged iterative estimation. The final estimate is also greater than the initial estimate for each indicator. For example, the initial communality estimate for the Number Recall task is .488, but the final estimate is .865 (Table 6.3). This pattern is expected because sample SMC values are generally attenuated by measurement error, but iterative estimation account for this effect.

Standardized pattern coefficients for all eight indicators across the 2 unrotated factors and across the 2 varimax-rotated factors from the PAF results are listed in Table 6.4. Because each pair of factors is orthogonal, the standardized pattern coefficients in the table are also structure coefficients. Observe in Table 6.4 that (a) the sum of the squared structure coefficients for each indicator across both factors in the each of the unrotated and rotated solutions equals the final communality estimate for that indicator. Also, (b) the sum of the squared structure coefficients for each factor equals the eigenvalue for that factor, within slight rounding error. (Readers should verify these statements.) There is no single standard for interpreting the magnitudes of structures coefficients in EFA, but one rule of thumb is that absolute structure coefficients > .40 indicate appreciable indicator-factor correspondence (e.g., Thompson, 2004). Accordingly, absolute coefficients > .40 in Table 6.4 are listed in boldface. It is no surprise in the unrotated solution that all eight indicators have relatively high correlations with the first extracted factor. However, the pattern of structure coefficients across the 2 varimax-rotated factors is more distinct. For example, all 5 subtests of the KABC-I’s Simultaneous Processing scale correlate appreciably with the
first rotated factor (see Table 6.4). Two of three subtests on the Sequential Processing scale have their highest correlations with the second rotated factor, but the other task, Hand Movements, correlates higher with the first rotated factor than the second. Thus, this task from the Sequential Processing scale seems to have more common with those from the Simultaneous Processing scale.

The assumption that cognitive ability factors are uncorrelated may be implausible. Thus, a second analysis using PAF extraction of 2 factors was conducted with the correlations in Table 6.1 but now with promax rotation. The estimated factor correlation in this analysis is .503, which says that the two factors share about 25% of their variance in common. Because the factors are correlated in this analysis, the standardized pattern coefficients are not also structure coefficients. Both sets of coefficients just mentioned are reported in Table 6.5 for each indicator.

The same general pattern of indicator-factor correspondence suggested by the structure coefficients from oblique rotation is similar to that suggested by the coefficients from orthogonal rotation (compare entries in the right sides of, respectively, Table 6.4 and Table 6.5). The results from oblique rotation in Table 6.5 also indicate suppression effects for some indicators. For example, the standardized pattern coefficient for predicting the Number Recall task from the from the first promax-rotated factor is negative (−.11), but the correlation between this indicator and the first factor is positive (.38). Suppression effects are also apparent for the Gestalt Closure task and the Triangles task (see Table 6.5). Overall, the EFA results are consistent with a two-factor model, but the Hand Movements task of the Sequential Processing scale is problematic because it seems to belong more with the tasks on the Simultaneous Processing scale. Results of CFA for these data described in the next section yield even more precise results concerning this particular indicator.

Table 6.4 Standardized pattern coefficients for unrotated and varimax-rotated factors of the Kaufman Assessment Battery for Children.

<table>
<thead>
<tr>
<th>Subtest</th>
<th>Unrotated factors</th>
<th>Rotated factors</th>
<th>h^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential scale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand Movements</td>
<td>.567</td>
<td>.430</td>
<td>.323</td>
</tr>
<tr>
<td>Number Recall</td>
<td>.661</td>
<td>.130</td>
<td>.865</td>
</tr>
<tr>
<td>Word Order</td>
<td>.608</td>
<td>.242</td>
<td>.529</td>
</tr>
<tr>
<td>Simultaneous scale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestalt Closure</td>
<td>.441</td>
<td>.522</td>
<td>.274</td>
</tr>
<tr>
<td>Triangles</td>
<td>.661</td>
<td>.695</td>
<td>.515</td>
</tr>
<tr>
<td>Spatial Memory</td>
<td>.632</td>
<td>.620</td>
<td>.436</td>
</tr>
<tr>
<td>Matrix Analogies</td>
<td>.595</td>
<td>.540</td>
<td>.366</td>
</tr>
<tr>
<td>Photo Series</td>
<td>.730</td>
<td>.747</td>
<td>.608</td>
</tr>
<tr>
<td>Eigenvalue</td>
<td>3.046</td>
<td>2.250</td>
<td>1.667</td>
</tr>
<tr>
<td>% variance</td>
<td>38.07</td>
<td>28.13</td>
<td>20.84</td>
</tr>
</tbody>
</table>

Note: h^2, final communality estimate. All coefficients are also structure coefficients. Absolute coefficients $> .40$ are shown in boldface.
6.7 Confirmatory Factor Analysis

As in EFA, the decision sequence for CFA begins with construct definition, indicator selection, and a sampling plan. Before collecting the data, the researcher should also specify the restricted measurement model to be analyzed in CFA and then check whether it is identified. The former requires specification of the number of factors in the model and the pattern of indicator-factor correspondence. The hypothesis of unidimensional measurement requires that there is a single pattern coefficient for each indicator and that there are no correlated errors (e.g., Figure 6.2(b)), that is, the model is a standard CFA model. Most CFA models described in the literature are standard models. Specification of multidimensional measurement is an option, but doing so requires a substantive rationale in order to allow indicators to depend on more than one factor or the specification of error correlation between a pair of indicators. Such nonstandard CFA models are more complex than standard models, and they are not always identified, an issue considered next.

6.7.1 Identification Requirements

A CFA measurement model is identified if it is theoretically possible for the computer to derive a unique estimate of every model parameter. The word “theoretically” emphasizes identification as a property of the model and not of the data. For example, if a model is not identified, then it remains so regardless of the sample size ($N = 100, 1,000, \text{ etc.}$). Therefore, models that are not identified must be respecified; otherwise, attempts to analyze them may be fruitless. There are two necessary but insufficient requirements for identification: (1) Every factor and error term must be assigned a scale, and (2) the model degrees of freedom must be at least zero ($df_M \geq 0$) The first requirement just mentioned was discussed earlier and is represented in diagrams of CFA models with the scaling constant “1” (e.g., Figure 6.2(b)).

The quantity df_M is the difference between the number of observations available in the analysis and the number of model parameters, which in CFA are the pattern coefficients,

Table 6.5 Standardized coefficients for promax-rotated factors of the Kaufman Assessment Battery for Children–1st Edition.

<table>
<thead>
<tr>
<th>Subtest</th>
<th>Pattern coefficients</th>
<th>Structure coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factor 1</td>
<td>Factor 2</td>
</tr>
<tr>
<td>Sequential scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand Movements</td>
<td>.379</td>
<td>.274</td>
</tr>
<tr>
<td>Number Recall</td>
<td>-.111</td>
<td>.981</td>
</tr>
<tr>
<td>Word Order</td>
<td>.081</td>
<td>.684</td>
</tr>
<tr>
<td>Simultaneous scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestalt Closure</td>
<td>.575</td>
<td>-.123</td>
</tr>
<tr>
<td>Triangles</td>
<td>.730</td>
<td>-.026</td>
</tr>
<tr>
<td>Spatial Memory</td>
<td>.632</td>
<td>.053</td>
</tr>
<tr>
<td>Matrix Analogies</td>
<td>.531</td>
<td>.128</td>
</tr>
<tr>
<td>Photo Series</td>
<td>.777</td>
<td>.005</td>
</tr>
</tbody>
</table>

Note: The estimated factor correlation is .503. Absolute coefficients $>.40$ are shown in boldface.
factor variances and covariances, and error variances and covariances. The number of observations is not the sample size. Instead, it is literally the number of entries in the data matrix in lower diagonal form where only the unique values of correlations or covariances are reported in the lower-left-hand side of the matrix. The number of observations is calculated as \(n(n + 1)/2 \), where \(n \) is the number of indicators, not the sample size. For example, if there are \(n = 4 \) indicators in a CFA model, then the number of observations is \((4)(5)/2 \), or 10. This count (10) equals the total number of diagonal and unique off-diagonal entries in the data matrix for 4 variables. With \(n = 4 \), the greatest number of parameters that could be estimated by the computer is 10. Fewer parameters can be estimated in a more parsimonious model, but not > 10. Also, the number of observations has nothing to do with sample size. If four indicators are measured for 100 or 1,000 cases, the number of observations is still 10. Adding cases does not increase the number of observations; only adding indicators can do so.

In practice, researchers should analyze models with positive degrees of freedom \((df_M \geq 0) \). This is because identified models with no degrees of freedom will perfectly fit the data, that is, all residual correlations will equal zero. When \(df_M = 0 \), the model is just as complex as the data to be explained. Such models are uninteresting because they test no specific hypotheses. Models where \(df_M > 0 \) generally do not have perfect fit. This is because \(df_M > 0 \) allows for the possibility of model-data discrepancies. Thus, retained models with greater degrees of freedom have withstood a greater potential for rejection. The idea underlies the parsimony principle: given two models with similar fit to the same data, the simpler model is preferred, assuming that it is theoretically plausible. Thus, the goal is thus to find a parsimonious measurement model with acceptably close fit to the data.

Additional identification requirements for standard CFA models concern the minimum number of indicators for each factor. A single-factor standard model requires at least three indicators in order to be identified. However, one-factor models with just three indicators have no degrees of freedom, so their fit to the data will be perfect, so in practice, a one-factor model should have \(\geq 4 \) indicators. A standard model with \(\geq 2 \) factors requires at least two indicators per factor in order to be identified. However, the analysis of CFA models where some factors have just two indicators is potentially problematic, so at least three indicators per factor is recommended.

The case concerning identification for nonstandard CFA models is more complicated. This is because unlike standard models, nonstandard CFA models that satisfy all the requirements just described are not always identified. In particular, specifying that an indicator depends on more than a single factor or that a pair of error terms is correlated is possible only if certain additional requirements are met. These extra requirements are summarized in the form of identification heuristics for determining whether a nonstandard model is identified (e.g., Kenny, Kashy, & Bolger, 1998; Kline, 2010, Chapter 6), but these heuristics are not always straightforward to apply for complex models with multiple correlated errors or indicators with \(\geq 2 \) pattern coefficients. For example, in order for a model with error correlations to be identified, each factor must have at minimum number of indicators whose errors are uncorrelated, but this minimum number is either two or three depending on patterns of error correlations and pattern coefficients among the other indicators. There are similar requirements for each pair of factors and for each indicator in a nonstandard model. The specification of a single error correlation or that an indicator measures two factors in a CFA model that is otherwise standard may not cause a problem. This is another reason to specify an initial CFA model that is parsimonious: Simpler models are less likely to run into problems concerning identification.
6.7.2 Parameter Estimation

The default method in CFA is ML, which in SEM analyzes covariance matrices only and simultaneously estimates all model parameters in an iterative algorithm. Computer procedures for ML estimation often begin iterative estimation by generating default initial estimates of certain model parameters known as start values. For example, the EQS program for SEM (including CFA) (Bentler, 2006) assumes in the first iteration that all unstandardized pattern coefficients in CFA models equal 1.0. However, if default start values are grossly inaccurate, then iterative estimation may fail to converge. Fortunately, most SEM computer tools allow the user to specify start values other than the program’s default values. Better initial estimates may lead to a converged solution; see Kline (2010, p. 263) for guidelines on how to specify start values in CFA. If estimation converges successfully, it is still necessary to carefully look through the estimates for Heywood cases, just as in EFA when using PAF extraction.

The method of ML estimation assumes multivariate normality, and the method is not robust against violations of this assumption. This means that it is necessary to carefully screen the raw data and deal with problems, such as extreme outlier scores or severely nonnormal univariate distributions that contribute to multivariate nonnormality. Kline (2010, chapter 3) describes how to screen the data and prepare a “proper” matrix summary for ML estimation. Many SEM computer tools can optionally use a corrected normal theory method, which uses ML estimation to generate parameter estimates that are then corrected for the degree of skew or kurtosis in the data. These corrected methods require input of a raw data file, not a matrix summary. There are other, more specialized estimation methods for severely non-normal data or for indicators that are not continuous variables, such as when items are specified as indicators in CFA models instead of scales. Some options for analyzing items-as-indicators in CFA are described in the next section.

6.7.3 Evaluation of Model Fit

There are two main classes of statistics in SEM that evaluate the correspondence between model and data, model test statistics and approximate fit indexes. The former are statistical tests of whether the covariance matrix implied by the researcher’s model is close enough to sample covariance matrix that the differences might reasonably be considered as due to sampling error. Most model test statistics are scaled such that higher values indicate increasingly poor model-data correspondence. Thus, it is a statistically significant result (e.g., \(p < .05 \)) that indicates problematic model–data correspondence. This logic is “backward” compared with most statistical tests where rejection of the null hypothesis supports the research hypothesis. But in SEM (and CFA, too) it is the lack of statistical significance (e.g., \(p \geq .05 \)) that supports the researcher’s model. The most widely reported test statistic is the model chi-square, \(\chi^2_M \), with degrees of freedom that equal \(df_M \), the model degrees of freedom. The statistic \(\chi^2_M \) assumes multivariate normality, which is also required in ML estimation.

In small samples, it can happen that the power of the model chi-square test is so low that it is difficult to correctly reject a false model (e.g., MacCallum et al., 1996). In very large samples, it can happen that \(\chi^2_M \) is statistically significant even though the magnitudes of model-data discrepancies are slight. For this reason, researchers in the past tended to ignore the results of the model chi-square test even in samples that were not very large. However, this practice is now viewed by more and more methodologists as excessively lax (e.g., Barrett, 2007). A better alternative is to consider a statistically significant result as providing preliminary evidence against the model that must be further diagnosed. Likewise, a model
chi-square test result that is not statistically significant does not automatically lead to the decision to retain the model, especially if the sample size is not very large. Further evaluation of a model’s fit to the data is also needed in this case (Kline, 2010).

The outcome of an approximate fit index is not the dichotomous decision to reject or retain a null hypothesis. Instead, these indexes are intended as continuous measures of model-data correspondence. Some approximate fit indexes are scaled such that lower values indicate closer model-data correspondence, but most are scaled so that it is higher values that suggest better fit. And the metrics of some approximate fit indexes are more-or-less standardized so that their range is 0–1.0 where a value of 1.0 indicates the best fit. Philosophically, approximate fit indexes are consistent with the view that truly correct models may not exist. That is, basically all statistical models are probably wrong to some degree because they are imperfect reflections of a complex reality. Instead, models are approximation tools that help researchers to structure their thinking about a phenomenon of interest. In contrast, a model test statistic is more analogous to a smoke detector: When the alarm sounds, there may or may not be a fire (serious model-data discrepancy), but it is prudent to treat the alarm seriously (conduct more detailed diagnostic evaluation of fit).

There are dozens of different approximate fit indexes, but most break down into a few basic categories. Briefly, absolute fit indexes are generally interpreted as proportions of the covariances in the sample data matrix explained by the model. However, explanatory power at the level of data matrix has little to do with whether the model accounts for relatively high proportions of the variance in the indicators. Incremental fit indexes indicate the relative improvement in fit of the researcher’s model compared with a statistical baseline model where it is assumed that all observed variables are uncorrelated. But the assumption of zero covariances among indicators of a measurement model is implausible in most cases. Parsimony-adjusted fit indexes includes in their equations a built-in “penalty” for complexity related to the value of df_m. (Recall that more parsimonious models have higher degrees of freedom.) And predictive fit indexes estimate model fit in hypothetical replication samples randomly drawn from the same population, but most applications of CFA do not call for this type of fit index.

Based on the results of some computer simulation studies conducted in the 1980s and 1990s about the behavior of approximate fit indexes under varying data and model conditions, many researchers relied on a series of rules of thumb or threshold values of approximate fit indexes that supposedly indicated “good” fit of the model to the data. An example of a threshold for the hypothetical XYZ index scaled from 0–1.0 would be, if $XYZ > .90$, then conclude “good” fit. At the same time that researchers increasingly relied on threshold values for approximate fit indexes, they also tended to ignore model test statistics. Unfortunately, results of more recent simulation studies indicate that (1) the accuracy of thresholds depend on the particular type of structural equation model studied, (2) expected values of approximate fit indexes have little relation to their threshold values when distributional assumptions are violated, and (3) there is little direct relation between values of fit statistics of any type (including model test statistics) and the degree or type of misspecification (e.g., Millsap, 2007). The point just mentioned explains why researchers should also provide more specific information about model fit. Perhaps the best way to do is to report the matrix of residual correlations, which say something about model fit at a more fundamental level than summary fit statistics (Kline, 2010). As in EFA, absolute residual correlations $> .10$ in CFA suggest poor explanation of the observed correlation between that pair of indicators.

Briefly described next are approximate fit indexes the values of which should be reported in most analyses; see Kline (2010, chap. 8) for more information. Threshold values are given for each index, but readers should not reify these values in view of the issues just raised.
The *Steiger-Lind root mean square error of approximation* (RMSEA) is a parsimony-corrected index that in computer output is usually reported with a 90% confidence interval, which takes account of sample size. Unlike χ^2, the RMSEA theoretically follows a *noncentral chi-square distribution* that allows for a certain degree of discrepancy between population and sample models. The best result is $\text{RMSEA} = 0$, and higher values indicate increasingly worse fit of the model to the data. If the value of the upper bound of the confidence interval based on the RMSEA exceeds .10, then problematic model-data correspondence may be indicated. The *Bentler comparative fit index* (CFI) is an incremental fit index that measures the relative improvement in fit of the researcher’s model over that of a baseline model that assumes uncorrelated indicators. Like the RMSEA, the CFI allows for some discrepancy between population and sample models. Values of the CFI range from 0–1.0 where 1.0 is the best result. The *standardized root mean square residual* (SRMR) is a measure of the mean absolute residual correlation, so values close to 0 are a better result. Ideally, the value of the CFI should exceed .95 or so, and the value of the SRMR should be < .10.

6.7.4 Model Respecification

If the fit of an initial CFA model to the data is poor, then the analysis enters the *respecification* phase where alternative models are generated and then fitted to the same data matrix. There are two general types of respecification options. The first concerns the correspondence between indicators and factors. The basic possibilities here include the respecifications that an indicator (a) loads on an additional factor, (b) depends on a different factor, or (c) shares an error correlation with another indicator, all compared with the original model. The second category for respecification concerns the factors. For example, the researcher may have specified the wrong number of factors. Poor discriminant validity as evidenced by very high factor correlations may indicate that the model has too many factors. On the other hand, poor convergent validity within sets of indicators of the same factor suggests that the model may have too few factors.

Respecification should be guided by the same theoretical and empirical bases that supported the specification of the original model. At the same time researchers often inspect certain types of output that may inform respecification. Inspecting the pattern of residual correlations may shed light on the question of indicator-factor correspondence. Suppose that indicator X_i is specified to measure factor A but (a) the residual correlations between it and all the indicators of factor B are large and positive and (b) the pattern coefficient for the $A \rightarrow X_i$ is reasonably large. This pattern suggests that X_i may measure both factors. A different possibility when there is a large residual correlation for a pair of indicators is that their specific variances overlap, or their error terms covary.

Most SEM computer tools can optionally print values of *modification indexes*, which are interpreted as chi-square statistics with a single degree of freedom, or $\chi^2 (1)$. A modification index estimates the amount by which the overall model chi-square would decrease if a previously-fixed-to-zero parameter were freely estimated, which adds the corresponding effect to the model. Suppose for a two-factor model that X_i is specified to measure factor A but not factor B. In this model, the parameter $B \rightarrow X_i$ is specified to equal 0. If the modification index for this parameter equals 5.50, then (a) it is estimated that the value of χ^2 will decrease by 5.5 points if the parameter $B \rightarrow X_i$ were added to the model and (b) the amount of this decrease would be statistically significant because $\chi^2 (1) = 5.50, p < .05$. However, the researcher must avoid respecifying the model based solely on modification indexes. This is because these statistics capitalize heavily on sample-specific variation, and respecification that
blindly chases modification indexes is unlikely to lead to a true model (e.g., Silvia & MacCallum, 1988). A related statistical test that is more generally useful for theoretically-based respecification is the chi-square difference test based on the χ^2_D (df_D) statistic, which is the difference between the χ^2 statistics for two hierarchically-related models fitted to the same data where df_D equals the difference between the df_M values for the two models. Two CFA models are hierarchical if one is a subset of the other, that is, a simpler version formed by dropping ≥ 1 parameters from a more complex model. Assuming that the more complex model fits the data, the result of the difference test indicates whether the relative fit of the simpler models is statistically worse than that of the more complex model. If not, then dropping the parameters to form the simpler model may not appreciably worsen overall fit; otherwise, the more complex model is favored. In CFA, the chi-square difference test is often used to compare, say, a two-factor solution versus a simpler one-factor model. If the fit of the more parsimonious one-factor model is not appreciably worse than that of the more complex multifactor model, then the one-factor model is preferred.

6.7.5 Empirical Example

Presented in Figure 6.5 is the two-factor CFA model of the KABI-I analyzed for this example. With 8 indicators, there are a total of $8(9)/2$, or 36 observations available to estimate the model’s 17 free parameters, including 10 variances (of 2 factors and 8 error terms), 1 factor covariance, and 6 pattern coefficients (2 for the first factor, 4 for the second), so $df_M = 36 - 17$, or 19. Listed in Appendix 6.2 is Mplus syntax that fits the model of Figure 6.5 to a covariance matrix assembled from the correlations and standard deviations in Table 6.1. The model is specified in Mplus with just two lines of code that define the indicator-factor correspondence under the Model section in the appendix. The Mplus program automatically scales the factors and specifies the error terms. The rest of the syntax in Appendix 6.2 controls program output.

The analysis in Mplus with default ML estimation converged to an admissible solution. Presented in Table 6.6 are the parameter estimates for the two-factor CFA model. Note in the table that the unstandardized pattern coefficients of the Hand Movements task and the Gestalt Closure task both equal 1.0 and have no standard errors. This is because these values are scaling constants (see Figure 6.5). The other six unstandardized coefficients were freely estimated, and their values are all statistically significant (Table 6.6).

Figure 6.5 A confirmatory factor analysis model of the Kaufman Assessment Battery for Children–1st Edition.
Standardized pattern coefficients are also reported in the table. Because each indicator depends on a single factor, these standardized pattern coefficients are also structure coefficients. The estimated factor correlation is .557 (see Table 6.6) which is similar to the corresponding result in EFA with an oblique rotation, .503.

Reported in Table 6.7 are values of structure coefficients for all 8 indicators of the KABC-I. Coefficients presented in boldface in the table are also standardized pattern coefficients for indicators specified to measure either factor. For example, the Hand Movements task is not specified to measure simultaneous processing; therefore, the pattern coefficient for the Hand Movements-simultaneous factor correspondence is zero (see Figure 6.5). However, the structure coefficients for the Hand Movements task are .497 and .753.

Table 6.6 Maximum likelihood estimates for a confirmatory two-factor model of the Kaufman Assessment Battery for Children–1st Edition.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unstandardized</th>
<th>SE</th>
<th>Standardized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential factor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand Movements</td>
<td>1.000</td>
<td>—</td>
<td>.497</td>
</tr>
<tr>
<td>Number Recall</td>
<td>1.147</td>
<td>.181</td>
<td>.807</td>
</tr>
<tr>
<td>Word Order</td>
<td>1.388</td>
<td>.219</td>
<td>.808</td>
</tr>
<tr>
<td>Simultaneous factor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestalt Closure</td>
<td>1.000</td>
<td>—</td>
<td>.503</td>
</tr>
<tr>
<td>Triangles</td>
<td>1.445</td>
<td>.227</td>
<td>.726</td>
</tr>
<tr>
<td>Spatial Memory</td>
<td>2.029</td>
<td>.335</td>
<td>.656</td>
</tr>
<tr>
<td>Matrix Analogies</td>
<td>1.212</td>
<td>.212</td>
<td>.588</td>
</tr>
<tr>
<td>Photo Series</td>
<td>1.727</td>
<td>.265</td>
<td>.782</td>
</tr>
<tr>
<td>Measurement error variances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand Movements</td>
<td>8.664</td>
<td>.938</td>
<td>.753</td>
</tr>
<tr>
<td>Number Recall</td>
<td>1.998</td>
<td>.414</td>
<td>.349</td>
</tr>
<tr>
<td>Word Order</td>
<td>2.902</td>
<td>.604</td>
<td>.347</td>
</tr>
<tr>
<td>Gestalt Closure</td>
<td>5.419</td>
<td>.585</td>
<td>.747</td>
</tr>
<tr>
<td>Triangles</td>
<td>3.425</td>
<td>.458</td>
<td>.472</td>
</tr>
<tr>
<td>Spatial Memory</td>
<td>9.998</td>
<td>1.202</td>
<td>.570</td>
</tr>
<tr>
<td>Matrix Analogies</td>
<td>5.104</td>
<td>.578</td>
<td>.654</td>
</tr>
<tr>
<td>Photo Series</td>
<td>3.483</td>
<td>.537</td>
<td>.389</td>
</tr>
<tr>
<td>Factor variances and covariance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequential</td>
<td>2.839</td>
<td>.838</td>
<td>1.000</td>
</tr>
<tr>
<td>Simultaneous</td>
<td>1.835</td>
<td>.530</td>
<td>1.000</td>
</tr>
<tr>
<td>Sequential \times Simultaneous</td>
<td>1.271</td>
<td>.324</td>
<td>.557</td>
</tr>
</tbody>
</table>

*Note: Standardized estimates for measurement errors are proportions of unexplained variance.

*Not tested for statistical significance. All other unstandardized estimates are statistically significant at $p < .01.$
.277 (Table 6.7). The former, .497, equals the standardized pattern coefficient loading for this indicator of the sequential processing factor (Table 6.6). The latter, .277, is the model-implied correlation between the Hand Movements task and the simultaneous processing factor. The results in the table clearly show that the structure coefficients are not typically zero for corresponding zero pattern coefficients when the factors are substantially correlated. Because the factors are correlated in both solutions, the structure coefficients from CFA (Table 6.7) can be directly compared with the structure coefficients from EFA with oblique rotation (Table 6.5). The pattern of these values is generally similar across the two analyses except that the Hand Movements task correlates higher with its own factor in the CFA results, but the opposite is true in the EFA results. Also, there is no evidence of suppression effects in the CFA results.

Listed next are values of fit statistics for this analysis; the 90% confidence interval for the RMSEA is reported in brackets:

\[
\chi^2 (19) = 38.325, \ p = .005
\]

RMSEA = .071 (.038 – .104)
CFI = .959; SRMR = .072

The model chi-square is statistically significant, so there is preliminary covariance evidence against the model. The upper bound of the RMSEA just exceeds .10, which is also unfavorable. Values of the CFI and SRMR are not problematic, but there is a need to more closely investigate sources of poor model fit.

Reported in Table 6.8 are the residual correlations for this analysis. Many of these residuals (shown in boldface in the table) exceed .10 in absolute value. Most of the larger residuals concern one of the indicators of sequential processing, Hand Movements, and most of the indicators of simultaneous processing. All of these residuals are positive, which means that the two-factor model generally underestimates correlations between Hand Movements and those specified to measure the other

Table 6.7 Structure coefficients for a confirmatory two-factor model of the Kaufman Assessment Battery for Children–1st Edition.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Sequential</th>
<th>Simultaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand Movements</td>
<td>.497</td>
<td>.277</td>
</tr>
<tr>
<td>Number Recall</td>
<td>.807</td>
<td>.449</td>
</tr>
<tr>
<td>Word Order</td>
<td>.808</td>
<td>.450</td>
</tr>
<tr>
<td>Gestalt Closure</td>
<td>.280</td>
<td>.503</td>
</tr>
<tr>
<td>Triangles</td>
<td>.405</td>
<td>.726</td>
</tr>
<tr>
<td>Spatial Memory</td>
<td>.365</td>
<td>.656</td>
</tr>
<tr>
<td>Matrix Analogies</td>
<td>.327</td>
<td>.588</td>
</tr>
<tr>
<td>Photo Series</td>
<td>.435</td>
<td>.782</td>
</tr>
</tbody>
</table>

Note. Structure coefficients that are also standardized pattern coefficients are shown in boldface.
Exploratory and Confirmatory Factor Analysis 199

Table 6.8 Correlation residuals for a confirmatory two-factor model of the Kaufman Assessment Battery for Children–1st Edition.

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Hand Movements</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Number Recall</td>
<td>-.011</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Word Order</td>
<td>-.052</td>
<td>.018</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simultaneous scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Gestalt Closure</td>
<td>.071</td>
<td>-.116</td>
<td>-.066</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Triangles</td>
<td>.119</td>
<td>-.057</td>
<td>-.037</td>
<td>.015</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Spatial Memory</td>
<td>.218</td>
<td>-.005</td>
<td>-.015</td>
<td>-.030</td>
<td>-.007</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Matrix Analogies</td>
<td>.227</td>
<td>.056</td>
<td>.035</td>
<td>.014</td>
<td>-.007</td>
<td>.024</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8. Photo Series</td>
<td>.174</td>
<td>-.061</td>
<td>.018</td>
<td>.027</td>
<td>.012</td>
<td>-.003</td>
<td>-.040</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: Absolute residuals >.10 are shown in boldface.

Table 6.9 Twelve largest modification indexes for a confirmatory two-factor model of the Kaufman Assessment Battery for Children–1st Edition.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simultaneous → Hand Movements</td>
<td>20.091* *</td>
</tr>
<tr>
<td>E_{WO} \leftrightarrow E_{NR}</td>
<td>20.042* *</td>
</tr>
<tr>
<td>Simultaneous → Number Recall</td>
<td>7.010* *</td>
</tr>
<tr>
<td>E_{HM} \leftrightarrow E_{WO}</td>
<td>7.015* *</td>
</tr>
<tr>
<td>E_{HM} \leftrightarrow E_{AM}</td>
<td>4.847*</td>
</tr>
<tr>
<td>E_{HM} \leftrightarrow E_{MA}</td>
<td>3.799</td>
</tr>
<tr>
<td>Sequential → Matrix Analogies</td>
<td>3.247</td>
</tr>
<tr>
<td>E_{NR} \leftrightarrow E_{PS}</td>
<td>3.147</td>
</tr>
<tr>
<td>Sequential → Gestalt Closure</td>
<td>2.902</td>
</tr>
<tr>
<td>E_{MA} \leftrightarrow E_{PS}</td>
<td>2.727</td>
</tr>
</tbody>
</table>

Note: MI = modification index; HM = Hand Movements; WO = Word Order; SM = Spatial Memory; MA = Matrix Analogies; PS = Photo Series.

* $p < .05$. ** $p < .01$.

factor. Based on all these results, the fit of the two-factor CFA model in Figure 6.5 is unacceptable.

Reported in Table 6.9 are values of the 10 largest modification indexes computed by Mplus for pattern coefficients and error covariances that are fixed to zero in the original model (Figure 6.5).
Note in the table that the $\chi^2(1)$ statistics for the paths

Simultaneous \rightarrow Hand Movements and $E_{WO} \prec \prec E_{NR}$

are nearly identical (respectively, 20.091 and 20.042). Thus, either allowing the Hand Movements task to also depend on the simultaneous processing factor or adding an error covariance between the Word Order and Number Recall tasks would reduce the value of χ^2_M by about 20 points. Among other respecifications suggested by the modification indexes, two have nearly the same $\chi^2(1)$ value: allow Number Recall to also load on the sequential processing factor (7.010), or allow the errors of the Hand Movements and Word Order tasks to covary (7.015) (Table 6.9). Obviously, the researcher needs some rationale for choosing among these potential respecifications. Based on my knowledge of the KABC-I and results of other studies (e.g., Keith, 1985), allowing the Hand Movements task to load on both factors is plausible.

For this example, the fit of the EFA model was better than the fit of the CFA model to the same data. This is not unexpected because the EFA model allows each indicator to load on both factors, but the CFA model specifies unidimensional measurement. This is one reason why the specification of a CFA model based on EFA outcomes and analyzed with the same data may lead to the rejection of the CFA model (van Prooijen & van der Kloot, 2001). That is, CFA does not generally “confirm” the results of EFA. But the CFA results made more obvious the sources of poor fit, which concern mainly the three indicators of the sequential processing factor.

6.8 Other Issues

Considered next are some additional issues and analysis options in factor analysis.

6.8.1 Items as Indicators

Likert-scale items are not generally continuous variables, and Pearson correlations may not be the best measure of association for them. This is especially true for items with binary response formats (e.g., true-false). Results of some computer simulation studies indicate that estimates from standard estimation methods for continuous variables may be inaccurate when the indicators are binary or ordinal variables. These simulation studies generally assume a true population measurement model with continuous indicators. Within generated samples, the indicators are categorized to approximate data from non-continuous variables. Bernstein and Teng (1989) found that when there is only a single factor in the population but the indicators have few categories, one-factor measurement models tend to be rejected too often. That is, categorization can spuriously suggest the presence of multiple factors. DiStefano (2002) found that ML parameter estimates and their standard errors were both generally too low when the data analyzed are from categorical indicators, and the degree of negative bias was higher as distributions became increasingly non-normal.

There are special estimation methods for analyzing ordinal indicators, such as items, available in some SEM computer tools, including EQS, LISREL, and Mplus (see Chapter 7 on Item Response Theory). These methods do not solely rely on ML estimation. Instead, they feature alternative estimators based on weighted least squares methods (e.g., Kline, 2010, chap. 7). These methods may be applied to a matrix of tetrachoric correlations or polychoric correlations, not Pearson correlations. A tetrachoric correlation is for two dichotomous variables, and it estimates what the Pearson r would be if both variables
were continuous and normally distributed. A *polychoric correlation* is the generalization of the tetrachoric correlation that estimates r for ordinal variables with ≥ 2 levels. Some computer procedures, such as the PRELIS program of LISREL, can export polychoric or tetrachoric correlation matrices for analysis in a different program. Another option is to analyze parcels instead of items. A *parcel* is a total score across a set of homogenous items each with a Likert-type format. Parcels are generally treated as continuous variables, and analyzing a Pearson correlation matrix based on parcels is not problematic. The score reliability of parcels (total scores) tends to be greater than that for the individual items. However, it is critical that the items in each parcel are homogeneous, or unidimensional; otherwise, the results may be misleading. There are also different ways to parcel items, including random assignment of items to parcels and groupings of items based on rational grounds, and the choice can affect the results; see T. Little, Cunningham, Shahar, and Widaman (2002) for more information.

Another complication of item-level factor analysis is that easy or frequently endorsed items tend to form factors that are distinct from other factors made up of harder or less commonly endorsed items (Nunnally & Bernstein, 1994). Such factors may reflect differential response base rates more than they mirror substantive latent variables. In this case, a multifactor solution would be spurious, rendering subsequent interpretations incorrect. The researcher should inspect the response of items that form different factors. If these rates vary systematically over the factors, then the results may be due more to statistical than substantive bases (O’Connor, n.d.).

6.8.2 Factor Scores

When raw data are analyzed, it is possible to calculate factor scores for each case. Because factors are not directly measured but instead through their indicators, such scores are only estimates of cases’ relative standings on the factors. There is more than one way to calculate factor scores, however, and although scores derived using different methods tend to be highly correlated, they generally do not all yield identical rank orderings of the cases. For example, given structure coefficients, the technique of multiple regression can be used to derive estimated factor scores that are weighted combinations of the indicators and the factor. The weights derived in regression are those that lead to the closest correspondence between the factors and the estimated factor scores. Other methods for oblique solutions constrain the correlations among the factor scores to match those of the corresponding factors. Given that there is more than one way to derive estimated factor scores, Bollen’s (1989) perspective on this matter is relevant: Researchers should probably refrain from making too fine a comparison on estimated factor scores. See Grice (2001) for more information about factor scores.

Factor scores are calculated in EFA more often than in CFA. One reason is that scores derived in EFA tend to be used as either predictors or outcomes in subsequent analyses that involve other variables. In contrast, factors in structural equation models can be represented as either predictors or outcomes of other variables in the model, latent or observed. Such models are not CFA models—they are actually structural regression models—but it is no special problem in SEM to estimate regression coefficients for effects between latent variables without having to calculate factor scores.

6.8.3 Measurement Invariance

There are methods for both EFA and CFA for evaluating *measurement invariance*, which concerns whether scores from the operationalization of a construct have the same meaning.
under different conditions (Meade & Lautenschlager, 2004). These different conditions could involve consistency of measurement over populations, time of measurement, or methods of test administration (e.g., computer-administered vs. paper-and-paper format). Invariance over populations is related to the concept of construct bias, which implies that a test measures something different in one group (e.g., men) than in another (women). If not (i.e., there is no evidence for construct bias), then measurement is invariant over groups.

One method for testing invariance in EFA described by B. Thompson (2004, Chapter 8) involves best-fit rotation where the factor solution in one sample is specified as the target structure and the factor solution in a different sample is rotated to match the target structure as close as possible. (This assumes the same number of factors is retained in both samples.) The method derives a new matrix of pattern coefficients and structure coefficients for the non-target sample and also calculates factor correlations across the two samples. If the cross-sample factor correlations are low or there is no match of the pattern/structure coefficients across the groups, then measurement is not invariant.

The method of CFA offers even more precise tests of measurement invariance. One reason is that it is possible in CFA to estimate mean contrasts on latent variables across ≥2 groups in a cross-sectional design or across ≥2 measurement occasions in longitudinal design for a given factor model. When means are analyzed in CFA, the model has a mean structure that represents factor mean differences and indicator intercepts for regression of the indicators on the factors in addition to the model’s covariance structure. So specified, a CFA model analyzed across multiple groups can be tested for various levels of measurement invariance. The most basic kind is configural invariance or equal form invariance. It is tested by specifying the same measurement model across the groups. In this model, both the number of factors and the factor-indicator correspondence are the same, but all parameters are freely estimated within each sample. If this model does not fit the data, then measurement invariance does not hold at any level. A stronger of form of invariance is construct-level metric invariance, which means that the unstandardized pattern coefficients of each indicator are equal within the bounds of sampling error across the groups. If the construct-level metric invariance hypothesis is retained, then the researcher could conclude that the constructs are manifested the same way in each group. If some, but not all, of the pattern coefficients are equal, then there is evidence for partial measurement invariance. It also possible in CFA to test for invariance concerning factor variances and covariances, error variances and covariances, and indicator intercepts; see Kline (2010, chapters 9, 11) for examples.

6.8.4 Multilevel Factor Analysis

There are versions of both EFA and CFA for analyzing measurement models in hierarchical (nested) data sets where (a) scores are clustered into larger units and (b) scores within each level may not be independent. Suppose that data are collected from high school students who attend a total of 100 different schools. Students within each school are presumably affected by common characteristics that include the curriculum, teaching staff, school policies about discipline, student-to-teacher ratios, physical resources of the school, and so on. Scores from students who attend the same school may not be independent, and one aim of multilevel modeling or hierarchical linear modeling is to adjust the statistical estimates for the degree of score dependencies. Multilevel techniques are also used to estimate contextual effects of higher-order variables on scores of individuals in a hierarchical data set. An example in a multilevel factor analysis could be whether differences in student-teacher ratios between schools predicts the magnitude of covariation between
indicators and factors within schools. Some SEM computer tools, including EQS, LISREL, and Mplus, support multilevel factor analysis, but the Mplus program is especially flexible in analyzing either exploratory or confirmatory measurement models in hierarchical data sets. See Heck and Thomas (2008) for an introduction to multilevel factor analysis.

6.9 Best Practices Summary

Some best practices for factor analysis are briefly summarized: Report enough summary statistics, such as indicator correlations, standard deviations, and means, so that a reader could reproduce the results or test alternative models. Clearly spell out the rationale for indicator selection, measurement, model specification, data characteristics including score reliabilities, and whether statistical assumptions are verified. Avoid applying factor analysis in samples that are just too small. Give specific details about decision points in the analysis. For example, state the data matrix analyzed, the method of factor extraction (EFA) or estimation (CFA), and the criteria for retaining a certain number of factors and selecting a particular rotation method (EFA). Report both the unstandardized solution and the standardized solution (with the appropriate standard errors) when analyzing a covariance matrix. If an initial model is respecified, inform readers about the theoretical or empirical justifications for these modifications. If no factor model is eventually retained, then explain what may be wrong with the theoretical foundations of the original model. Before using factor analysis, the researcher should thoroughly study the technique either in a course, professional workshop, or self study, but he or she should be open to a process of continual learning. Along these lines, B. Thompson (2004) gives concise and clear introductions to EFA and CFA, Brown (2006) describes CFA for applied researchers, and Mulaik (2009) provides a comprehensive treatment of EFA for readers with strong quantitative backgrounds.

Notes

1. There are freely available (after registration) online reviews of correlation and regression fundamentals available at http://www.statisticalassociates.com/
2. O’Connor (2000) describes SPSS and SAS/STAT macros for parallel analysis that can be freely downloaded from https://people.ok.ubc.ca/brioconn/nfactors/nfactors.html
3. Keith (1985) suggested alternative names for the factors in the KABC-I’s theoretical model, including short-term memory instead of sequential processing and visual-spatial reasoning instead of simultaneous processing. These different names for the same factors should remind all us to avoid the naming fallacy.
4. Readers can freely download all syntax, data, and output files in either plain text or Adobe PDF formats for both empirical examples (EFA, CFA) in this chapter from http://psychology.concordia.ca/fac/kline/efa&cfa.html
5. The Mplus program can optionally print standard errors for standardized estimates, but these values are not reported in Table 6.6.

References

Appendix 6.1: SPSS Syntax for an Exploratory Factor Analysis of the K-ABC

* principle axis factoring, correlation data matrix, 2-factor solution, varimax & promax rotations, summary statistics are input data.
matrix data variables = hm, nr, wo, gc, tr, sm, ma, ps/
 contents = mean sd n corr/
 format = lower nodiagonal.
begin data
13.70 11.10 13.60 18.20 13.80 13.90 15.40 12.70
3.40 2.40 2.90 2.70 2.70 4.20 2.80 3.00
200 200 200 200 200 200 200 200
.end data
* varimax (orthogonal) rotation, analysis fails at default number of iterations (25).
factor matrix = in(cor = *)/
 criteria = factors(2) iterate(50)/
 extraction = paf/
 rotation = varimax/
 print = initial extraction rotation repr/
 plot = eigen rotation.
* promax (oblique) rotation, analysis fails at default number of iterations (25).
factor matrix = in(cor = *)/
 criteria = factors(2) iterate(50)/
 extraction = paf/
 rotation = promax/
 print = initial extraction rotation repr/
 plot = eigen rotation.
Appendix 6.2: Mplus Syntax for a Confirmatory Factor Analysis of the K-ABC

```plaintext
title: 2-factor standard CFA model, ML estimation, covariance data matrix
data:
! read summary statistics from external text file:
   file is "kabc.dat";
   type is stdeviations correlation;
   Ngroups = 1; Nobservations = 200;
variable:
   names are hm nr wo gc tr sm ma ps;
analysis:
   type is general;
model:
! indicator-factor correspondence:
   Sequent by hm nr wo;
   Simult by gc tr sm ma ps;
! Mplus automatically scales factors and specifies error terms and factor variances and covariance
output: sampstat modindices(all,0) residual stdyx;
! requests standardized solution, residuals, and all modification indexes > 0

Contents of File “kabc.dat”

3.40 2.40 2.90 2.70 2.70 4.20 2.80 3.00 1.00
.39 1.00
.35 .67 1.00
.21 .11 .16 1.00
.32 .27 .29 .38 1.00
.40 .29 .28 .30 .47 1.00
.39 .32 .30 .31 .42 .41 1.00
.39 .29 .37 .42 .58 .51 .42 1.00
```