NEW FROM THE GUILFORD PRESS
Date Issued: June 19, 2015

Revised and Expanded!

Principles and Practice of Structural Equation Modeling, Fourth Edition
Rex B. Kline, PhD, Department of Psychology, Concordia University, Montreal, Quebec, Canada

Publication Date: November 2015
Copyright: 2016
Pages: 510
Size: 7" x 10"
Hardcover: ISBN 978-1-4625-2335-1; Hardcover Price: $120.00 tentative/short discount
Series: Methodology in the Social Sciences; Series Editor: Todd D. Little

Website Categories: RESEARCH METHODS: Quantitative Methods. PSYCHOLOGY, PSYCHIATRY, & SOCIAL WORK: Social & Personality Psychology; Sociology; Developmental Psychology.

Subject Areas/Keywords: advanced quantitative techniques, behavioral sciences, causal inferences, latent variable modeling, methodology, multivariate analysis, path analysis, psychology, research methods, SEM, social sciences, statistics, structural equation modeling

DESCRIPTION
Emphasizing concepts and rationale over mathematical minutiae, this is the most widely used, complete, and accessible structural equation modeling (SEM) text. Continuing the tradition of using real data examples from a variety of disciplines, the significantly revised fourth edition incorporates recent developments such as Pearl's graph theory and structural causal model (SCM), measurement invariance, and more. Readers gain a comprehensive understanding of all phases of SEM, from data collection and screening to the interpretation and reporting of the results. Learning is enhanced by exercises with answers, rules to remember, and topic boxes. The companion website supplies data, syntax, and output for the book's examples—now including files for Amos, EQS, LISREL, Mplus, Stata, and R (lavaan).

New to This Edition
- Extensively revised to cover important new topics: Pearl's graph theory and the SCM, causal inference frameworks, conditional process modeling, path models for longitudinal data, item response theory, and more.
- New chapters on best practices in all stages of SEM, measurement invariance in confirmatory factor analysis, and significance testing issues and bootstrapping.
- Expanded coverage of psychometrics.
Additional computer tools: online files for all detailed examples, previously provided in EQS, LISREL, and Mplus, are now also given in Amos, Stata, and R (lavaan).

Reorganized to cover the specification, identification, and analysis of observed variable models separately from latent variable models.

Pedagogical Features
- Exercises with answers, plus end-of-chapter annotated lists of further reading.
- Real examples of troublesome data, demonstrating how to handle typical problems in analyses.
- Topic boxes on specialized issues, such as causes of nonpositive definite correlations.
- Boxed rules to remember.
- Website promoting a learn-by-doing approach, including syntax and data files for six widely used SEM computer tools.

KEY POINTS
- The top-selling SEM text, extensively revised: 45% new material includes the first primer-level introduction to Pearl’s structural causal model (SCM), plus several other new chapters.
- Students love Kline’s writing and his use of real-world examples and just enough math.
- Learn-by-doing approach, complete with everything needed to run the examples on six SEM software tools, including Mplus, Stata, and R (lavaan).
- User-friendly features: real data examples from a variety of disciplines, exercises with answers, rule tips, and topic boxes.
- Online resources: comprehensive website provides data, syntax, and output files for all detailed examples in the book.

AUDIENCE
Graduate students, instructors, and researchers in psychology, education, human development and family studies, management, sociology, social work, nursing, public health, criminal justice, and communication.

COURSE USE
Serves as a text for graduate-level courses in structural equation modeling, multivariate statistics, advanced quantitative methods, or research methodology.

CONTENTS
I. Concepts and Tools
 1. Coming of Age
 Preparing to Learn SEM; Definition of SEM; Importance of Theory; A Priori, but Not Exclusively Confirmatory; Probabilistic Causation; Observed Variables and Latent Variables; Data Analyzed in SEM; SEM Requires Large Samples; Less Emphasis on Significance Testing; SEM and Other Statistical Techniques; SEM and Other Causal Inference Frameworks; Myths about SEM; Widespread Enthusiasm, but with a Cautionary Tale; Family History; Summary; Learn More
2. Regression Fundamentals
 Bivariate Regression; Multiple Regression; Left-Out Variables Error; Suppression; Predictor Selection and Entry;
 Partial and Part Correlation; Observed versus Estimated Correlations; Logistic Regression and Probit
 Regression; Summary; Learn More; Exercises

3. Significance Testing and Bootstrapping
 Standard Errors; Critical Ratios; Power and Types of Null Hypotheses; Significance Testing Controversy;
 Confidence Intervals and Noncentral Test Distributions; Bootstrapping; Summary; Learn More; Exercises

4. Data Preparation and Psychometrics Review
 Forms of Input Data; Positive Definiteness; Extreme Collinearity; Outliers; Normality; Transformations; Relative
 Variances; Missing Data; Selecting Good Measures and Reporting about Them; Score Reliability; Score
 Validity; Item Response Theory and Item Characteristic Curves; Summary; Learn More; Exercises

5. Computer Tools
 Ease of Use, Not Suspension of Judgment; Human–Computer Interaction; Tips for SEM Programming; SEM
 Computer Tools; Other Computer Resources for SEM; Computer Tools for the SCM; Summary; Learn More

II. Specification and Identification

 Steps of SEM; Model Diagram Symbols; Causal Inference; Specification Concepts; Path Analysis Models;
 Recursive and Nonrecursive Models; Path Models for Longitudinal Data; Summary; Learn More; Exercises; Appendix 6.A. LISREL Notation for Path Models

7. Identification of Observed Variable (Path) Models
 General Requirements; Unique Estimates; Rule for Recursive Models; Identification of Nonrecursive Models;
 Models with Feedback Loops and All Possible Disturbance Correlations; Graphical Rules for Other Types of
 Nonrecursive Models; Respecification of Nonrecursive Models that are Not Identified; A Healthy Perspective
 on Identification; Empirical Underidentification; Managing Identification Problems; Path Analysis Research
 Example; Summary; Learn More; Exercises; Appendix 7.A. Evaluation of the Rank Condition

8. Graph Theory and the Structural Causal Model
 Introduction to Graph Theory; Elementary Directed Graphs and Conditional Independences; Implications for
 Regression Analysis; d-Separation; Basis Set; Causal Directed Graphs; Testable Implications; Graphical
 Identification Criteria; Causal Mediation; Summary; Learn More; Exercises; Appendix 8.A. Locating Conditional Independences in Directed Cyclic Graphs; Appendix 8.B. Counterfactual
 Definitions of Direct and Indirect Effects

9. Specification and Identification of Confirmatory Factor Analysis Models
 Latent Variables in CFA; Factor Analysis; Characteristics of EFA Models; Characteristics of CFA Models; Other
 CFA Specification Issues; Identification of CFA Models; Rules for Standard CFA Models; Rules for Nonstandard
 CFA Models; Empirical Underidentification in CFA; CFA Research Example; Summary; Learn More; Exercises; Appendix 9.A. LISREL Notation for CFA Models

10. Specification and Identification of Structural Regression Models
 Causal Inference with Latent Variables; Types of SR Models; Single Indicators; Identification of SR Models;
 Exploratory SEM; SR Model Research Examples; Summary; Learn More; Exercises; Appendix 10.A. LISREL
 Notation for SR Models

III. Analysis

11. Estimation and Local Fit Testing
 Types of Estimators; Causal Effects in Path Analysis; Single-Equation Methods; Simultaneous Methods;
 Maximum Likelihood Estimation; Detailed Example; Fitting Models to Correlation Matrices; Alternative
 Estimators; A Healthy Perspective on Estimation; Summary; Lean More; Exercises; Appendix 11.A. Start Value
 Suggestions for Structural Models

12. Global Fit Testing
 State of Practice, State of Mind; A Healthy Perspective on Global Fit Statistics; Model Test Statistics;
 Approximate Fit Indexes; Recommended Approach to Fit Evaluation; Model Chi-Square; RMSEA; CFI; SRMR;
 Tips for Inspecting Residuals; Global Fit Statistics for the Detailed Example; Testing Hierarchical Models;
 Comparing Nonhierarchical Models; Power Analysis; Equivalent and Near-Equivalent Models; Summary; Learn
 More; Exercises; Appendix 12.A. Model Chi-Squares Printed by LISREL

13. Analysis of Confirmatory Factor Analysis Models
 Fallacies about Factor or Indicator Labels; Estimation of CFA Models; Detailed Example; Respecification
 of CFA Models; Special Topics and Tests; Equivalent CFA Models; Special CFA Models; Analyzing Likert-Scale
 Items as Indicators; Item Response Theory as an Alternative to CFA; Summary; Learn More; Exercises;

14. Analysis of Structural Regression Models
 Two-Step Modeling; Four-Step Modeling; Interpretation of Parameter Estimates and Problems; Detailed Example; Equivalent Structural Regression Models; Single Indicators in a Nonrecursive Model; Analyzing Formative Measurement Models in SEM; Summary; Learn More; Exercises; Appendix 14.A. Constraint Interaction in SR Models; Appendix 14.B. Effect Decomposition in Nonrecursive Models and the Equilibrium Assumption
 Appendix 14.C. Corrected Proportions of Explained Variance for Nonrecursive Models

IV. Advanced Techniques and Best Practices

15. Mean Structures and Latent Growth Models
 Logic of Mean Structures; Identification of Mean Structures; Estimation of Mean Structures; Latent Growth Models; Detailed Example; Comparison with a Polynomial Growth Model; Extensions of Latent Growth Models; Summary; Learn More; Exercises

16. Multiple-Samples Analysis and Measurement Invariance
 Rationale of Multiple-Samples SEM; Measurement Invariance; Testing Strategy and Related Issues; Example with Continuous Indicators; Example with Ordinal Indicators
 Structural Invariance; Alternative Statistical Techniques; Summary; Learn More; Exercises; Appendix 16.A. Welch–James Test

17. Interaction Effects and Multilevel Structural Equation Modeling
 Interactive Effects of Observed Variables; Interactive Effects in Path Analysis; Conditional Process Modeling; Causal Mediation Analysis; Interactive Effects of Latent Variables; Multilevel Modeling and SEM; Summary; Exercises; Learn More

 Resources; Specification; Identification; Measures; Sample and Data; Estimation; Respecification; Tabulation; Interpretation; Avoid Confirmation Bias; Bottom Lines and Statistical Beauty; Summary; Learn More

Suggested Answers to Exercises
References
Author Index
Subject Index
About the Author

ABOUT THE AUTHOR
Rex B. Kline, PhD, is Professor of Psychology at Concordia University in Montreal, Quebec, Canada. Since earning a doctorate in clinical psychology, he has conducted research on the psychometric evaluation of cognitive abilities, child clinical assessment, structural equation modeling, training of researchers, statistics reform in the behavioral sciences, and usability engineering in computer science. Dr. Kline has published a number of books, chapters, and journal articles in these areas.

GUILFORD PUBLICATIONS, INC.
370 Seventh Avenue, Suite 1200
New York, NY 10001-1020
Tel: (212) 431-9800 Toll Free: (800) 365-7006
Fax: (212) 966-6708 E-mail: info@guilford.com
Visit our website: www.guilford.com